Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cytotherapy ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38762805

RESUMO

BACKGROUND AIMS: Extracellular vesicles (EVs) represent a new axis of intercellular communication that can be harnessed for therapeutic purposes, as cell-free therapies. The clinical application of mesenchymal stromal cell (MSC)-derived EVs, however, is still in its infancy and faces many challenges. The heterogeneity inherent to MSCs, differences among donors, tissue sources, and variations in manufacturing conditions may influence the release of EVs and their cargo, thus potentially affecting the quality and consistency of the final product. We investigated the influence of cell culture and conditioned medium harvesting conditions on the physicochemical and proteomic profile of human umbilical cord MSC-derived EVs (hUCMSC-EVs) produced under current good manufacturing practice (cGMP) standards. We also evaluated the efficiency of the protocol in terms of yield, purity, productivity, and expression of surface markers, and assessed the biodistribution, toxicity and potential efficacy of hUCMSC-EVs in pre-clinical studies using the LPS-induced acute lung injury model. METHODS: hUCMSCs were isolated from a cord tissue, cultured, cryopreserved, and characterized at a cGMP facility. The conditioned medium was harvested at 24, 48, and 72 h after the addition of EV collection medium. Three conventional methods (nanoparticle tracking analysis, transmission electron microscopy, and nanoflow cytometry) and mass spectrometry were used to characterize hUCMSC-EVs. Safety (toxicity of single and repeated doses) and biodistribution were evaluated in naive mice after intravenous administration of the product. Efficacy was evaluated in an LPS-induced acute lung injury model. RESULTS: hUCMSC-EVs were successfully isolated using a cGMP-compliant protocol. Comparison of hUCMSC-EVs purified from multiple harvests revealed progressive EV productivity and slight changes in the proteomic profile, presenting higher homogeneity at later timepoints of conditioned medium harvesting. Pooled hUCMSC-EVs showed a non-toxic profile after single and repeated intravenous administration to naive mice. Biodistribution studies demonstrated a major concentration in liver, spleen and lungs. HUCMSC-EVs reduced lung damage and inflammation in a model of LPS-induced acute lung injury. CONCLUSIONS: hUCMSC-EVs were successfully obtained following a cGMP-compliant protocol, with consistent characteristics and pre-clinical safety profile, supporting their future clinical development as cell-free therapies.

2.
Viruses ; 15(3)2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36992454

RESUMO

Neurological effects of COVID-19 and long-COVID-19, as well as neuroinvasion by SARS-CoV-2, still pose several questions and are of both clinical and scientific relevance. We described the cellular and molecular effects of the human brain microvascular endothelial cells (HBMECs) in vitro exposure by SARS-CoV-2 to understand the underlying mechanisms of viral transmigration through the blood-brain barrier. Despite the low to non-productive viral replication, SARS-CoV-2-exposed cultures displayed increased immunoreactivity for cleaved caspase-3, an indicator of apoptotic cell death, tight junction protein expression, and immunolocalization. Transcriptomic profiling of SARS-CoV-2-challenged cultures revealed endothelial activation via NF-κB non-canonical pathway, including RELB overexpression and mitochondrial dysfunction. Additionally, SARS-CoV-2 led to altered secretion of key angiogenic factors and to significant changes in mitochondrial dynamics, with increased mitofusin-2 expression and increased mitochondrial networks. Endothelial activation and remodeling can further contribute to neuroinflammatory processes and lead to further BBB permeability in COVID-19.


Assuntos
COVID-19 , NF-kappa B , Humanos , NF-kappa B/metabolismo , SARS-CoV-2/metabolismo , Células Endoteliais/metabolismo , Síndrome de COVID-19 Pós-Aguda , COVID-19/metabolismo , Encéfalo , Barreira Hematoencefálica , Mitocôndrias/metabolismo
3.
bioRxiv ; 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35734080

RESUMO

Neurological effects of COVID-19 and long-COVID-19 as well as neuroinvasion by SARS-CoV-2 still pose several questions and are of both clinical and scientific relevance. We described the cellular and molecular effects of the human brain microvascular endothelial cells (HBMECs) in vitro infection by SARS-CoV-2 to understand the underlying mechanisms of viral transmigration through the Blood-Brain Barrier. Despite the low to non-productive viral replication, SARS-CoV-2-infected cultures displayed increased apoptotic cell death and tight junction protein expression and immunolocalization. Transcriptomic profiling of infected cultures revealed endothelial activation via NF-κB non-canonical pathway, including RELB overexpression, and mitochondrial dysfunction. Additionally, SARS-CoV-2 led to altered secretion of key angiogenic factors and to significant changes in mitochondrial dynamics, with increased mitofusin-2 expression and increased mitochondrial networks. Endothelial activation and remodeling can further contribute to neuroinflammatory processes and lead to further BBB permeability in COVID-19.

4.
Res Sq ; 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35734086

RESUMO

Neurological effects of COVID-19 and long-COVID-19 as well as neuroinvasion by SARS-CoV-2 still pose several questions and are of both clinical and scientific relevance. We described the cellular and molecular effects of the human brain microvascular endothelial cells (HBMECs) in vitro infection by SARS-CoV-2 to understand the underlying mechanisms of viral transmigration through the Blood-Brain Barrier. Despite the low to non- productive viral replication, SARS-CoV-2-infected cultures displayed increased apoptotic cell death and tight junction protein expression and immunolocalization. Transcriptomic profiling of infected cultures revealed endothelial activation via NF-κB non-canonical pathway, including RELB overexpression, and mitochondrial dysfunction. Additionally, SARS-CoV-2 led to altered secretion of key angiogenic factors and to significant changes in mitochondrial dynamics, with increased mitofusin-2 expression and increased mitochondrial networks. Endothelial activation and remodeling can further contribute to neuroinflammatory processes and lead to further BBB permeability in COVID-19.

5.
Biochim Biophys Acta Proteins Proteom ; 1869(8): 140656, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33857633

RESUMO

Axon guidance is required for the establishment of brain circuits. Whether much of the molecular basis of axon guidance is known from animal models, the molecular machinery coordinating axon growth and pathfinding in humans remains to be elucidated. The use of induced pluripotent stem cells (iPSC) from human donors has revolutionized in vitro studies of the human brain. iPSC can be differentiated into neuronal stem cells which can be used to generate neural tissue-like cultures, known as neurospheres, that reproduce, in many aspects, the cell types and molecules present in the brain. Here, we analyzed quantitative changes in the proteome of neurospheres during differentiation. Relative quantification was performed at early time points during differentiation using iTRAQ-based labeling and LC-MS/MS analysis. We identified 6438 proteins, from which 433 were downregulated and 479 were upregulated during differentiation. We show that human neurospheres have a molecular profile that correlates to the fetal brain. During differentiation, upregulated pathways are related to neuronal development and differentiation, cell adhesion, and axonal guidance whereas cell proliferation pathways were downregulated. We developed a functional assay to check for neurite outgrowth in neurospheres and confirmed that neurite outgrowth potential is increased after 10 days of differentiation and is enhanced by increasing cyclic AMP levels. The proteins identified here represent a resource to monitor neurosphere differentiation and coupled to the neurite outgrowth assay can be used to functionally explore neurological disorders using human neurospheres as a model.


Assuntos
Axônios/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Neurais/metabolismo , Axônios/patologia , Encéfalo/metabolismo , Proliferação de Células/fisiologia , Cromatografia Líquida/métodos , Humanos , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Crescimento Neuronal/fisiologia , Neurônios/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
6.
Glia ; 68(7): 1396-1409, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32003513

RESUMO

Astrogliosis comprises a variety of changes in astrocytes that occur in a context-specific manner, triggered by temporally diverse signaling events that vary with the nature and severity of brain insults. However, most mechanisms underlying astrogliosis were described using animals, which fail to reproduce some aspects of human astroglial signaling. Here, we report an in vitro model to study astrogliosis using human-induced pluripotent stem cells (iPSC)-derived astrocytes which replicate temporally intertwined aspects of reactive astrocytes in vivo. We analyzed the time course of astrogliosis by measuring nuclear translocation of NF-kB, production of cytokines, changes in morphology and function of iPSC-derived astrocytes exposed to TNF-α. We observed NF-kB p65 subunit nuclear translocation and increased gene expression of IL-1ß, IL-6, and TNF-α in the first hours following TNF-α stimulation. After 24 hr, conditioned media from iPSC-derived astrocytes exposed to TNF-α exhibited increased secretion of inflammation-related cytokines. After 5 days, TNF-α-stimulated cells presented a typical phenotype of astrogliosis such as increased immunolabeling of Vimentin and GFAP and nuclei with elongated shape and shrinkage. Moreover, ~50% decrease in aspartate uptake was observed during the time course of astrogliosis with no evident cell damage, suggesting astroglial dysfunction. Together, our results indicate that human iPSC-derived astrocytes reproduce canonical events associated with astrogliosis in a time dependent fashion. The approach described here may contribute to a better understanding of mechanisms governing human astrogliosis with potential applicability as a platform to uncover novel biomarkers and drug targets to prevent or mitigate astrogliosis associated with human brain disorders.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encefalopatias/metabolismo , Citocinas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Filamentos Intermediários/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vimentina/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-30455237

RESUMO

Chikungunya virus (CHIKV) causes a febrile disease associated with chronic arthralgia, which may progress to neurological impairment. Chikungunya fever (CF) is an ongoing public health problem in tropical and subtropical regions of the world, where control of the CHIKV vector, Aedes mosquitos, has failed. As there is no vaccine or specific treatment for CHIKV, patients receive only palliative care to alleviate pain and arthralgia. Thus, drug repurposing is necessary to identify antivirals against CHIKV. CHIKV RNA polymerase is similar to the orthologue enzyme of other positive-sense RNA viruses, such as members of the Flaviviridae family. Among the Flaviviridae, not only is hepatitis C virus RNA polymerase susceptible to sofosbuvir, a clinically approved nucleotide analogue, but so is dengue, Zika, and yellow fever virus replication. Here, we found that sofosbuvir was three times more selective in inhibiting CHIKV production in human hepatoma cells than ribavirin, a pan-antiviral drug. Although CHIKV replication in human induced pluripotent stem cell-derived astrocytes was less susceptible to sofosbuvir than were hepatoma cells, sofosbuvir nevertheless impaired virus production and cell death in a multiplicity of infection-dependent manner. Sofosbuvir also exhibited antiviral activity in vivo by preventing CHIKV-induced paw edema in adult mice at a dose of 20 mg/kg of body weight/day and prevented mortality in a neonate mouse model at 40- and 80-mg/kg/day doses. Our data demonstrate that a prototypic alphavirus, CHIKV, is also susceptible to sofosbuvir. As sofosbuvir is a clinically approved drug, our findings could pave the way to it becoming a therapeutic option against CF.


Assuntos
Antivirais/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/patogenicidade , Sofosbuvir/uso terapêutico , Replicação Viral/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Artralgia/tratamento farmacológico , Artralgia/virologia , Febre de Chikungunya/virologia , Humanos , Masculino , Camundongos
9.
Sci Signal ; 10(472)2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28351945

RESUMO

Vitamin C is essential for the development and function of the central nervous system (CNS). The plasma membrane sodium-vitamin C cotransporter 2 (SVCT2) is the primary mediator of vitamin C uptake in neurons. SVCT2 specifically transports ascorbate, the reduced form of vitamin C, which acts as a reducing agent. We demonstrated that ascorbate uptake through SVCT2 was critical for the homeostasis of microglia, the resident myeloid cells of the CNS that are essential for proper functioning of the nervous tissue. We found that depletion of SVCT2 from the plasma membrane triggered a proinflammatory phenotype in microglia and resulted in microglia activation. Src-mediated phosphorylation of caveolin-1 on Tyr14 in microglia induced the internalization of SVCT2. Ascorbate treatment, SVCT2 overexpression, or blocking SVCT2 internalization prevented the activation of microglia. Overall, our work demonstrates the importance of the ascorbate transport system for microglial homeostasis and hints that dysregulation of ascorbate transport might play a role in neurological disorders.


Assuntos
Ácido Ascórbico/metabolismo , Caveolina 1/metabolismo , Endocitose , Microglia/metabolismo , Neurônios/metabolismo , Transportadores de Sódio Acoplados à Vitamina C/metabolismo , Animais , Western Blotting , Linhagem Celular , Membrana Celular/metabolismo , Citocinas/metabolismo , Feminino , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Knockout , Microglia/citologia , Microscopia Confocal , Fosforilação , Ratos Wistar , Transportadores de Sódio Acoplados à Vitamina C/genética
10.
Sci Rep ; 7: 40920, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098253

RESUMO

Zika virus (ZIKV) is a member of the Flaviviridae family, along with other agents of clinical significance such as dengue (DENV) and hepatitis C (HCV) viruses. Since ZIKV causes neurological disorders during fetal development and in adulthood, antiviral drugs are necessary. Sofosbuvir is clinically approved for use against HCV and targets the protein that is most conserved among the members of the Flaviviridae family, the viral RNA polymerase. Indeed, we found that sofosbuvir inhibits ZIKV RNA polymerase, targeting conserved amino acid residues. Sofosbuvir inhibited ZIKV replication in different cellular systems, such as hepatoma (Huh-7) cells, neuroblastoma (SH-Sy5y) cells, neural stem cells (NSC) and brain organoids. In addition to the direct inhibition of the viral RNA polymerase, we observed that sofosbuvir also induced an increase in A-to-G mutations in the viral genome. Together, our data highlight a potential secondary use of sofosbuvir, an anti-HCV drug, against ZIKV.


Assuntos
Antivirais/farmacologia , Sofosbuvir/farmacologia , Replicação Viral/efeitos dos fármacos , Zika virus/fisiologia , Antivirais/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/metabolismo , Genoma Viral , Humanos , Mutação , Sofosbuvir/uso terapêutico , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Zika virus/genética , Zika virus/isolamento & purificação , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia
11.
Sci Rep ; 7: 40912, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098256

RESUMO

Dopamine and glutamate are critical neurotransmitters involved in light-induced synaptic activity in the retina. In brain neurons, dopamine D1 receptors (D1Rs) and the cytosolic protein tyrosine kinase Src can, independently, modulate the behavior of NMDA-type glutamate receptors (NMDARs). Here we studied the interplay between D1Rs, Src and NMDARs in retinal neurons. We reveal that dopamine-mediated D1R stimulation provoked NMDAR hypofunction in retinal neurons by attenuating NMDA-gated currents, by preventing NMDA-elicited calcium mobilization and by decreasing the phosphorylation of NMDAR subunit GluN2B. This dopamine effect was dependent on upregulation of the canonical D1R/adenylyl cyclase/cAMP/PKA pathway, of PKA-induced activation of C-terminal Src kinase (Csk) and of Src inhibition. Accordingly, knocking down Csk or overexpressing a Csk phosphoresistant Src mutant abrogated the dopamine-induced NMDAR hypofunction. Overall, the interplay between dopamine and NMDAR hypofunction, through the D1R/Csk/Src/GluN2B pathway, might impact on light-regulated synaptic activity in retinal neurons.


Assuntos
Dopamina/farmacologia , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Retina/efeitos dos fármacos , Quinases da Família src/metabolismo , Animais , Proteína Tirosina Quinase CSK , Cálcio/metabolismo , Embrião de Galinha , Galinhas , Colforsina/farmacologia , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/genética , Receptores de N-Metil-D-Aspartato/genética , Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/genética
12.
Sci Rep ; 7: 40780, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112162

RESUMO

Zika virus (ZIKV) has been associated with microcephaly and other brain abnormalities; however, the molecular consequences of ZIKV to human brain development are still not fully understood. Here we describe alterations in human neurospheres derived from induced pluripotent stem (iPS) cells infected with the strain of Zika virus that is circulating in Brazil. Combining proteomics and mRNA transcriptional profiling, over 500 proteins and genes associated with the Brazilian ZIKV infection were found to be differentially expressed. These genes and proteins provide an interactome map, which indicates that ZIKV controls the expression of RNA processing bodies, miRNA biogenesis and splicing factors required for self-replication. It also suggests that impairments in the molecular pathways underpinning cell cycle and neuronal differentiation are caused by ZIKV. These results point to biological mechanisms implicated in brain malformations, which are important to further the understanding of ZIKV infection and can be exploited as therapeutic potential targets to mitigate it.


Assuntos
Proteoma , Transcriptoma , Infecção por Zika virus/genética , Infecção por Zika virus/metabolismo , Zika virus/fisiologia , Biomarcadores , Ciclo Celular/genética , Genômica/métodos , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Filogenia , Infecção por Zika virus/virologia
13.
Viruses ; 8(12)2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27916837

RESUMO

Zika virus (ZIKV) infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres.


Assuntos
Antivirais/farmacologia , Cloroquina/farmacologia , Endocitose/efeitos dos fármacos , Infecção por Zika virus/virologia , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Camundongos
14.
Science ; 352(6287): 816-8, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27064148

RESUMO

Since the emergence of Zika virus (ZIKV), reports of microcephaly have increased considerably in Brazil; however, causality between the viral epidemic and malformations in fetal brains needs further confirmation. We examined the effects of ZIKV infection in human neural stem cells growing as neurospheres and brain organoids. Using immunocytochemistry and electron microscopy, we showed that ZIKV targets human brain cells, reducing their viability and growth as neurospheres and brain organoids. These results suggest that ZIKV abrogates neurogenesis during human brain development.


Assuntos
Encéfalo/anormalidades , Encéfalo/virologia , Microcefalia/virologia , Células-Tronco Neurais/virologia , Neurogênese , Infecção por Zika virus/complicações , Zika virus/patogenicidade , Brasil , Morte Celular , Células Cultivadas , Humanos , Microcefalia/patologia , Células-Tronco Neurais/patologia , Organoides/anormalidades , Organoides/virologia , Infecção por Zika virus/patologia
15.
Purinergic Signal ; 11(2): 183-201, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25663277

RESUMO

When retinal cell cultures were mechanically scratched, cell growth over the empty area was observed. Only dividing and migrating, 2 M6-positive glial cells were detected. Incubation of cultures with apyrase (APY), suramin, or Reactive Blue 2 (RB-2), but not MRS 2179, significantly attenuated the growth of glial cells, suggesting that nucleotide receptors other than P2Y1 are involved in the growth of glial cells. UTPγS but not ADPßS antagonized apyrase-induced growth inhibition in scratched cultures, suggesting the participation of UTP-sensitive receptors. No decrease in proliferating cell nuclear antigen (PCNA(+)) cells was observed at the border of the scratch in apyrase-treated cultures, suggesting that glial proliferation was not affected. In apyrase-treated cultures, glial cytoplasm protrusions were smaller and unstable. Actin filaments were less organized and alfa-tubulin-labeled microtubules were mainly parallel to scratch. In contrast to control cultures, very few vinculin-labeled adhesion sites could be noticed in these cultures. Increased Akt and ERK phosphorylation was observed in UTP-treated cultures, effect that was inhibited by SRC inhibitor 1 and PI3K blocker LY294002. These inhibitors and the FAK inhibitor PF573228 also decreased glial growth over the scratch, suggesting participation of SRC, PI3K, and FAK in UTP-induced growth of glial cells in scratched cultures. RB-2 decreased dissociated glial cell attachment to fibronectin-coated dishes and migration through transwell membranes, suggesting that nucleotides regulated adhesion and migration of glial cells. In conclusion, mechanical scratch of retinal cell cultures induces growth of glial cells over the empty area through a mechanism that is dependent on activation of UTP-sensitive receptors, SRC, PI3K, and FAK.


Assuntos
Movimento Celular/efeitos dos fármacos , Neuroglia/citologia , Nucleotídeos/metabolismo , Retina/efeitos dos fármacos , Animais , Apirase/farmacologia , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Galinhas , Cromonas/farmacologia , Morfolinas/farmacologia , Neurogênese/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Quinolonas/farmacologia , Retina/lesões , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia , Suramina/farmacologia
16.
Glia ; 63(3): 497-511, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25421817

RESUMO

Microglial cells are the resident macrophages of the central nervous system. Their function is essential for neuronal tissue homeostasis. After inflammatory stimuli, microglial cells become activated changing from a resting and highly ramified cell shape to an amoeboid-like morphology. These morphological changes are associated with the release of proinflammatory cytokines and glutamate, as well as with high phagocytic activity. The acquisition of such phenotype has been associated with activation of cytoplasmic tyrosine kinases, including those of the Src family (SFKs). In this study, using both in vivo and in vitro inflammation models coupled to FRET-based time-lapse microscopy, lentiviruses-mediated shRNA delivery and genetic gain-of-function experiments, we demonstrate that among SFKs c-Src function is necessary and sufficient for triggering microglia proinflammatory signature, glutamate release, microglia-induced neuronal loss, and phagocytosis. c-Src inhibition in retinal neuroinflammation experimental paradigms consisting of intravitreal injection of LPS or ischemia-reperfusion injury significantly reduced microglia activation changing their morphology to a more resting phenotype and prevented neuronal apoptosis. Our data demonstrate an essential role for c-Src in microglial cell activation.


Assuntos
Microglia/enzimologia , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Animais , Apoptose/fisiologia , Proteína Tirosina Quinase CSK , Linhagem Celular , Células Cultivadas , Galinhas , Gliose/enzimologia , Gliose/patologia , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Inflamação/enzimologia , Inflamação/patologia , Isquemia/enzimologia , Isquemia/patologia , Lipopolissacarídeos , Masculino , Camundongos , Microglia/patologia , Neurônios/fisiologia , Fagocitose/fisiologia , Ratos Wistar , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Neurônios Retinianos/patologia , Neurônios Retinianos/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Quinases da Família src/metabolismo
17.
Neurochem Int ; 58(3): 414-22, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21193002

RESUMO

ATP can be released from neurons and act as a neuromodulator in the nervous system. Besides neurons, cortical astrocytes also are capable of releasing ATP from acidic vesicles in a Ca(2+)-dependent way. In the present work, we investigated the release of ATP from Müller glia cells of the chick embryo retina by examining quinacrine staining and by measuring the extracellular levels of ATP in purified Müller glia cultures. Our data revealed that glial cells could be labeled with quinacrine, a reaction that was prevented by incubation of the cells with 1µM bafilomycin A1 or 2µM Evans blue, potent inhibitors of vacuolar ATPases and of the vesicular nucleotide transporter, respectively. Either 50mM KCl or 1mM glutamate was able to decrease quinacrine staining of the cells, as well as to increase the levels of ATP in the extracellular medium by 77% and 89.5%, respectively, after a 5min incubation of the cells. Glutamate-induced rise in extracellular ATP could be mimicked by 100µM kainate (81.5%) but not by 100µM NMDA in medium without MgCl(2) but with 2mM glycine. However, both glutamate- and kainate-induced increase in extracellular ATP levels were blocked by 50µM of the glutamatergic antagonists DNQX and MK-801, suggesting the involvement of both NMDA and non-NMDA receptors. Extracellular ATP accumulation induced by glutamate was also blocked by incubation of the cells with 30µM BAPTA-AM or 1µM bafilomycin A1. These results suggest that glutamate, through activation of both NMDA and non-NMDA receptors, induces the release of ATP from retinal Müller cells through a calcium-dependent exocytotic mechanism.


Assuntos
Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio/fisiologia , Ácido Glutâmico/fisiologia , Neuroglia/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Ácido Glutâmico/farmacologia , Neuroglia/efeitos dos fármacos , Quinacrina/química , Retina/citologia , Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA