Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Morphol ; 285(8): e21752, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39016160

RESUMO

Detailed osteological descriptions of the craniomandibular complex of passerine birds are lacking for most species, limiting our understanding of their diversity and evolution. Cowbirds (genus Molothrus) are a small but widespread group of New World nine-primaried songbirds, well-known for their unique brooding parasitic behavior. However, detailed osteological data for cowbirds and other Icteridae are currently scarce and several features of their skulls remain undescribed or poorly known. To address this issue, a detailed comparative osteology of cowbird skulls is presented here for the first time based on data from x-ray microcomputed tomography, dry skeletal data, and multivariate analyses of linear morphometric data. Cowbird skulls offer some functional insights, with many finch-like features probably related to a seed-rich diet that distinguishes them from most other icterids. In addition, features previously overlooked in earlier studies might provide valuable phylogenetic information at different levels of passerine phylogeny (Passerida, Emberizoidea, Icteridae, and Agelaiinae), including some of the otic region and nasal septum. Comparisons among cowbirds show that there is substantial cranial variation within the genus, with M. oryzivorus being the most divergent cowbird species. Within the genus, distantly related species share similar overall skull morphology and proportions, but detailed osteological data allow species identification even in cases of strong convergence. Further efforts are warranted to furnish baseline data for future studies of this iconic group of Neotropical birds and to fully integrate it into phylogenetic comparative frameworks.


Assuntos
Crânio , Microtomografia por Raio-X , Animais , Crânio/anatomia & histologia , Filogenia , Masculino , Osteologia , Feminino , Aves Canoras/anatomia & histologia , Evolução Biológica , Passeriformes/anatomia & histologia
2.
J Morphol ; 282(11): 1587-1603, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34369611

RESUMO

Cowbirds are a successful group of obligate brood parasites in the Neotropical passerine family Icteridae that offer an interesting model to explore the factors behind the evolution of the bird craniomandibular complex. The Giant Cowbird, Molothrus oryzivorus, stands out from its congeners, among other features, in diet (feeds mostly on fruit, nectar, and arthropods, instead on seeds), its larger body size, and longer, more robust beak with a much broader bony casque than in other cowbirds. In turn, Giant Cowbirds show a remarkable resemblance in these features to the distantly related caciques and oropendolas (some are its breeding hosts). However, the causes behind the latter resemblance and the distinctiveness among cowbirds have not yet been elucidated. We aim to explore the factors involved in the diverging morphology of the Giant Cowbird from its congeners and the convergence with caciques and oropendolas, surveying their skull and lower jaw under an explicit evolutionary framework. Using geometric morphometrics and comparative methods, we assessed the signal of phylogeny, convergence, feeding ecology, and size in skull shape. Our results indicated that evolution of the craniomandibular complex of icterids in general, and of the beak morphology in the Giant Cowbird in particular, are shaped by multiple factors, with phylogeny being largely overridden by changes in size (evolutionary allometry), primarily, and feeding ecology, secondarily. However, the evolution of a broad bony casque in the Giant Cowbird, otherwise a hallmark of caciques and oropendolas, does not appear to have primarily been ruled by evolutionary allometry. Instead, taking into account the unique extreme convergence between Giant Cowbirds and some of its caciques hosts, it might be consequence of selective regimes associated with parasite-host interactions acting on top of other evolutionary processes. This suggests chick mimicry as a reasonable explanation for this peculiar morphology that would require further investigation.


Assuntos
Parasitos , Passeriformes , Animais , Bico , Filogenia , Crânio
3.
Behav Processes ; 189: 104438, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34087347

RESUMO

Females of brood parasitic shiny cowbirds, Molothrus bonariensis, search and prospect host nests, synchronizing parasitism with host laying. This behavior is sex-specific, as females perform this task without male's assistance. Host nests must be removed from the female's memory "library" after being parasitized, to avoid repeated parasitism, or when they become unavailable because of predation. Thus, females must adjust their stored information about host nest status more dynamically than males, possibly leading to differences in learning flexibility. We tested for sex differences in a visual (local cues) and a spatial discrimination reversal learning task, expecting females to outperform males as an expression of greater behavioral flexibility. Both sexes learned faster the spatial than the visual task during both acquisition and reversal. In the visual task there were no sex differences in acquisition, but females reversed faster than males. In the spatial task there were no sex differences during either acquisition or reversal, possibly because of a ceiling effect: both sexes learned too fast for differences in performance to be detectable. Faster female reversal in a visual but not spatial task indicates that the greater behavioral flexibility in females may only be detectable above some level of task difficulty.


Assuntos
Parasitos , Passeriformes , Animais , Feminino , Masculino , Comportamento de Nidação , Comportamento Predatório , Caracteres Sexuais
4.
J Insect Physiol ; 128: 104164, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220240

RESUMO

It is well known that viscosity reduces the intake rates in nectar-feeding insects, such as nectivorous ants, though it remains unclear whether viscosity imposes a higher energy investment in these insects, and how this affects their feeding motivation. To address this issue, we studied feeding behavior, metabolism, and pharyngeal pump activity in the carpenter ant Camponotus mus during ingestion of ad libitum sucrose solutions. In some solutions tylose was added to modify viscosity without changing its sucrose concentration, in a way that allowed comparing: (1) two solutions with the same viscosity and different sucrose concentration (10 T and 50), and (2) two solutions with different viscosity and the same sucrose concentration (50 and 50 T). The viscosity increase was detrimental to the metabolic rate and energy balance. Ants feeding on a solution with high sucrose concentration and increased viscosity (50 T) spent extra-time until reaching a crop load similar to that reached by ingesting the solution without tylose (50). For all solutions offered, ants started feeding with the same pharyngeal pump frequencies, reflecting a similar motivation. Interesting, when ants fed on a low sucrose concentration and increased viscosity solution (10 T), their pump frequencies dropped rapidly respect to the pure-sucrose solution (50). On the contrary, pump frequencies for 50 and 50 T remained similar until the end of the intake. Since the pump frequency is strongly modulated by the ant motivation, an increase in viscosity with low sucrose content, demotivates the ants rapidly, suggesting a rapid integration of different kinds of information about the food value. Our results helped to understand how nectivorous ants could modulate their foraging decision-making.


Assuntos
Formigas/fisiologia , Metabolismo Basal/fisiologia , Comportamento Alimentar/fisiologia , Viscosidade , Animais , Tomada de Decisões , Metabolismo Energético , Néctar de Plantas , Sacarose
5.
Anim Cogn ; 24(1): 205-212, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32980971

RESUMO

Shiny and screaming cowbirds are avian interspecific brood parasites that locate and prospect host nests in daylight and return from one to several days later to lay an egg during the pre-dawn twilight. Thus, during nest location and prospecting, both location information and visual features are available, but the latter become less salient in the low-light conditions when the nests are visited for laying. This raises the question of how these different sources of information interact, and whether this reflects different behavioural specializations across sexes. Differences are expected, because in shiny cowbirds, females act alone, but in screaming cowbirds, both sexes make exploratory and laying nest visits together. We trained females and males of shiny and screaming cowbird to locate a food source signalled by both colour and position (cues associated), and evaluated performance after displacing the colour cue to make it misleading (cues dissociated). There were no sex or species differences in acquisition performance while the cues were associated. When the colour cue was relocated, individuals of both sexes and species located the food source making fewer visits to non-baited wells than expected by chance, indicating that they all retained the position as an informative cue. In this phase, however, shiny cowbird females, but not screaming, outperformed conspecific males, visiting fewer non-baited wells before finding the food location and making straighter paths in the search. These results are consistent with a greater reliance on spatial memory, as expected from the shiny cowbird female's specialization on nest location behaviour.


Assuntos
Parasitos , Passeriformes , Animais , Sinais (Psicologia) , Feminino , Masculino , Comportamento de Nidação , Caracteres Sexuais , Memória Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA