Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(52): 78603-78619, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35691946

RESUMO

The suitability of groundwater and agricultural products for human consumption requires determining levels and assessing the health risks associated with potential pollutants. Here, particularly pollution with nitrate still remains a challenge, especially for those urban areas suffering from insufficient sewage collection systems, resulting in contaminating soil, endangering food safety, and deteriorating drinking water quality. In the present study, nitrate concentrations in the commonly consumed fruit and vegetable species were determined, and the results, together with the groundwater nitrate levels, were used to assess the associated health risks for Mashhad city residents. For this assessment, 261 water samples and 16 produce types were used to compute the daily intake of nitrate. Nitrate in groundwater was analyzed using a spectrophotometer, and produce species were examined using High-Performance Liquid Chromatography. Ward's hierarchical cluster analysis was applied for categorizing produce samples with regard to their nitrate content. Additionally, to account for the sanitation hazards associated with groundwater quality for drinking purposes, total coliform and turbidity were also assessed using the membrane filter (MF) technique and a nephelometer, respectively. Nitrate concentrations exceeded the prescribed permissible limits in 42% of the groundwater wells. The outcomes also exhibit significantly higher nitrate accumulation levels in root-tuber vegetables and leafy vegetables compared to fruit vegetables and fruits. Using cluster analysis, the accumulation of nitrate in vegetables and fruits was categorized into four clusters, specifying that radish contributes to 65.8% of the total content of nitrate in all samples. The Estimated Daily Intake (EDI) of nitrate and Health Risk Index (HRI) associated with consumption of groundwater exceeded the prescribed limit for the children's target group in Mashhad's south and central parts. Likewise, EDI and HRI values for produce consumption, in most samples, were found to be in the tolerable range, except for radish, lettuce, and cabbage, potentially posing risks for both children and adult consumers. The total coliforms in groundwater were found to violate the prescribed limit at 78.93% of the sampling locations and were generally much higher over the city's central and southern areas. A relatively strong correlation (R2 = 0.6307) between total coliform and nitrate concentrations suggests the release of anthropogenic pollution (i.e., sewage and manure) in the central and southern Mashhad.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Criança , Adulto , Humanos , Nitratos/análise , Esgotos/análise , Esterco/análise , Irã (Geográfico) , Água Potável/análise , Poluentes Químicos da Água/análise , Água Subterrânea/química , Compostos Orgânicos/análise , Medição de Risco , Verduras/química , Óxidos de Nitrogênio/análise , Solo , Monitoramento Ambiental/métodos
2.
Environ Res ; 213: 113638, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35705130

RESUMO

The drinking water scarcity is posing a threat to mankind, hence better water quality management methods are required. Magnetic water treatment, which has been reported to improve aesthetic water quality and reduce scaling problems, can be an important addition to the traditional disinfectant dependent treatment. Despite the extensive market application opportunities, the effect of magnetic fields on (microbial) drinking water communities and subsequently the biostability is still largely unexplored, although the first patent was registered already 1945. Here flow cytometry was applied to assess the effect of weak magnetic fields (≤10 G) with strong gradients (≈800 G/m) on drinking water microbial communities. Drinking water was collected from the tap and placed inside the magnetic field (treated) and 5 m away from the magnet to avoid any background interferences (control) using both a static set-up and a shaking set-up. Samples were collected during a seven-day period for flow cytometry examination. Additionally, the effects of magnetic fields on the growth of Pseudomonas aeruginosa in autoclaved tap water were examined. Based on the fluorescent intensity of the stained nucleic acid content, the microbial cells were grouped into low nucleic acid content (LNA) and high nucleic acid content (HNA). Our results show that the LNA was dominant under nutrient limited condition while the HNA dominates when nutrient is more available. Such behavior of LNA and HNA matches well with the long discussed r/K selection model where r-strategists adapted to eutrophic conditions and K-strategists adapted to oligotrophic conditions. The applied magnetic fields selectively promote the growth of LNA under nutrient rich environment, which indicates a beneficial effect on biostability enhancement. Inhibition on an HNA representative Pseudomonas aeruginosa has also been observed. Based on our laboratory observations, we conclude that magnetic field treatment can be a sustainable method for microbial community management with great potential.


Assuntos
Água Potável , Ácidos Nucleicos , Purificação da Água , Bactérias , Fenômenos Magnéticos , Microbiologia da Água , Purificação da Água/métodos
3.
Water Res ; 202: 117444, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34314923

RESUMO

Drinking water plumbing systems appear to be a unique environment for microorganisms as they contain few nutrients but a high mineral concentration. Interactions between mineral content and bacteria, such as microbial calcium carbonate precipitation (MCP) however, has not yet attracted too much attention in drinking water sector. This study aims to carefully examine MCP behavior of two drinking water bacteria species, which may potentially link scaling and biofouling processes in drinking water distribution systems. Evidence from cell density evolution, chemical parameters, and microscopy suggest that drinking water isolates can mediate CaCO3 precipitation through previously overlooked MCP mechanisms like ammonification or biosorption. The results also illustrate the active control of bacteria on the MCP process, as the calcium starts to concentrate onto cell surfaces only after reaching a certain cell density, even though the cell surfaces are shown to be the ideal location for the CaCO3 nucleation.


Assuntos
Água Potável , Aminoácidos , Bactérias , Biofilmes , Carbonato de Cálcio
4.
Plants (Basel) ; 8(11)2019 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-31744188

RESUMO

Plant root systems are essential for sustainable agriculture, conveying resource-efficient genotypes and species with benefits to soil ecosystem functions. Targeted selection of species/genotypes depends on available root system information. Currently there is no standardized approach for comprehensive root system characterization, suggesting the need for data integration across methods and sources. Here, we combine field measured root descriptors from the classical Root Atlas series with traits from controlled-environment root imaging for 10 cover crop species to (i) detect descriptors scaling between distant experimental methods, (ii) provide traits for species classification, and (iii) discuss implications for cover crop ecosystem functions. Results revealed relation of single axes measures from root imaging (convex hull, primary-lateral length ratio) to Root Atlas field descriptors (depth, branching order). Using composite root variables (principal components) for branching, morphology, and assimilate investment traits, cover crops were classified into species with (i) topsoil-allocated large diameter rooting type, (ii) low-branched primary/shoot-born axes-dominated rooting type, and (iii) highly branched dense rooting type, with classification trait-dependent distinction according to depth distribution. Data integration facilitated identification of root classification variables to derive root-related cover crop distinction, indicating their agro-ecological functions.

5.
Environ Monit Assess ; 186(9): 5363-79, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24816590

RESUMO

Quantification of fluxes of water into and out of terminal lakes like Basaka has fundamental challenges. This is due to the fact that accurate measurement and quantification of most of the parameters of a lake's hydrologic cycle are difficult. Furthermore, quantitative understanding of the hydrologic systems and hence, the data-intensive modelling is difficult in developing countries like Ethiopia due to limitation of sufficient recorded data. Therefore, formulation of a conceptual water balance model is extremely important as it presents a convenient analytical tool with simplified assumptions to simulate the magnitude of unknown fluxes. In the current study, a conceptual lake water balance model was systematically formulated, solved, calibrated, and validated successfully. Then, the surface water and groundwater interaction was quantified, and a mathematical relationship developed. The overall agreement between the observed and simulated lake stage at monthly time step was confirmed based on the standard performance parameters (R(2), MAE, RMSE, E(f)). The result showed that hydrological water balance of the lake is dominated by the groundwater (GW) component. The net GW flux in recent period (post-2000s) accounts about 56% of the total water inflow. Hence, GW plays a leading role in the hydrodynamics and existence of Lake Basaka and is mostly responsible for the expansion of the lake. Thus, identification of the potential sources/causes for the GW flux plays a leading role in order to limit the further expansion of the lake. Measurement of GW movement and exchange in the area is a high priority for future research.


Assuntos
Monitoramento Ambiental/métodos , Lagos/química , Modelos Estatísticos , Recursos Hídricos/estatística & dados numéricos , Abastecimento de Água/estatística & dados numéricos , Etiópia , Água Subterrânea/química , Hidrologia , Ciclo Hidrológico
6.
Sensors (Basel) ; 13(12): 17067-83, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24351626

RESUMO

For many water management issues of shallow lakes with non-consolidated sediments hydrographic surveys of the open water area and reed belt areas are required. In the frame of water management strategy for the steppe lake Neusiedler See, located between Austria and Hungary, a hydrographic survey was conducted. In the open water area (water depth ≥1 m) a sediment echosounder was used. To validate these measurements and to distinguish between water, mud, and sediment layers in the shallow lake and reed belt area additional measurements were needed. As no common standard methods are available yet, we developed a measurement system based on two commonly applied soil physical measurement techniques providing reproducible physical values: a capacitive sensor and a cone penetrometer combined with GNSS-positioning enable dynamic measurements of georeferenced vertical water-mud-bedsediments profiles. The system bases on site-specific calibrated sensors and allows instantaneous, in situ measurements. The measurements manifest a sharp water-mud interface by a sudden decline to smaller water content which is a function of the dielectric permittivity. A second decline indicates the transition to compacted mud. That is concurrently the density where the penetrometer starts registering significant penetration resistance. The penetrometer detects shallow lakebed-sediment layers. Within the lake survey this measurement system was successfully tested.


Assuntos
Sedimentos Geológicos/análise , Solo , Monitoramento Ambiental , Lagos
7.
Sci Total Environ ; 442: 96-102, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23178827

RESUMO

The need for water continues to become more acute with the changing requirements of an expanding world population. Using a logistical analysis of data from 301 respondents from households that harvest rainwater in Uganda, the relationship between dependent variables, such as water management performed as female-dominated practices, and independent variables, such as years of water harvesting, family size, tank operation and maintenance, and the presence of local associations, was investigated. The number of years of water harvesting, family size, tank operation and maintenance, and presence of local associations were statistically significantly related to adequate efficient water management. The number of years of water harvesting was linked to women's participation in household chores more than to the participation of men, the way of livelihoods lived for many years. Large families were concurrent with a reduction in water shortages, partially because of the availability of active labour. The findings also reveal important information regarding water-related operations and maintenance at the household level and the presence of local associations that could contribute some of the information necessary to minimise water-related health risks. Overall, this investigation revealed important observations about the water management carried out by women with respect to underlying safe-water shortages, gender perspectives, and related challenges in Uganda that can be of great importance to developing countries.


Assuntos
Conservação dos Recursos Naturais , Países em Desenvolvimento , Água Doce/análise , Abastecimento de Água/análise , Clima , Características da Família , Feminino , Humanos , Higiene , Masculino , Chuva , Fatores Sexuais , Fatores Socioeconômicos , Uganda , Purificação da Água , Abastecimento de Água/normas
8.
J Water Health ; 8(2): 334-45, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20154396

RESUMO

Given the possibility of waterborne diseases caused by inappropriate rainwater harvesting systems, a survey was conducted in Uganda to assess existing knowledge of both physical and non-physical measures that safeguard harvested rainwater. Households who had received rainwater tanks were assessed on issues related to harvested rainwater quality. The study shows that 84% of respondents were aware of various sources of rainwater contamination, but only 5% were aware that they needed to adjust use of rainwater, depending on whether they cleaned the tank or not. Most of the respondents were not aware that gutter cleaning was necessary to improve water quality. Indeed, as the water from the collection surface is channelled through gutters, a number of measures need to be taken to control the entry of contaminations and subsequent growth of pathogens in the tank, e.g. first flush diverts, installation of filters, chemical use and mesh cleaning. The majority, however, did not take adequate care of the gutters and this impacts on health and social livelihood. Overall, the findings emphasize the need to provide more information to households when installing water harvesting tanks to ensure that the harvested rainwater is of high quality.


Assuntos
Água Doce , Conhecimentos, Atitudes e Prática em Saúde , Chuva , População Rural , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Socioeconômicos , Uganda , Purificação da Água , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA