Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
2.
PLoS One ; 19(3): e0298434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446753

RESUMO

In H. pylori infection, antibiotic-resistance is one of the most common causes of treatment failure. Bacterial metabolic activities, such as energy production, bacterial growth, cell wall construction, and cell-cell communication, all play important roles in antimicrobial resistance mechanisms. Identification of microbial metabolites may result in the discovery of novel antimicrobial therapeutic targets and treatments. The purpose of this work is to assess H. pylori metabolomic reprogramming in order to reveal the underlying mechanisms associated with the development of clarithromycin resistance. Previously, four H. pylori isolates were induced to become resistant to clarithromycin in vitro by incrementally increasing the concentrations of clarithromycin. Bacterial metabolites were extracted using the Bligh and Dyer technique and analyzed using metabolomic fingerprinting based on Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-Q-ToF-MS). The data was processed and analyzed using the MassHunter Qualitative Analysis and Mass Profiler Professional software. In parental sensitivity (S), breakpoint isolates (B), and induced resistance isolates (R) H. pylori isolates, 982 metabolites were found. Furthermore, based on accurate mass, isotope ratios, abundances, and spacing, 292 metabolites matched the metabolites in the Agilent METLIN precise Mass-Personal Metabolite Database and Library (AM-PCDL). Several metabolites associated with bacterial virulence, pathogenicity, survival, and proliferation (L-leucine, Pyridoxone [Vitamine B6], D-Mannitol, Sphingolipids, Indoleacrylic acid, Dulcitol, and D-Proline) were found to be elevated in generated resistant H. pylori isolates when compared to parental sensitive isolates. The elevated metabolites could be part of antibiotics resistance mechanisms. Understanding the fundamental metabolome changes in the course of progressing from clarithromycin-sensitive to breakpoint to resistant in H. pylori clinical isolates may be a promising strategy for discovering novel alternatives therapeutic targets.


Assuntos
Anti-Infecciosos , Helicobacter pylori , Claritromicina/farmacologia , Virulência , Reprogramação Metabólica
3.
Gut Pathog ; 15(1): 52, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898785

RESUMO

BACKGROUND: Clarithromycin-containing triple therapy is commonly used to treat Helicobacter pylori infections. Clarithromycin resistance is the leading cause of H. pylori treatment failure. Understanding the specific mutations that occur in H. pylori strains that have evolved antibiotic resistance can help create a more effective and individualised antibiotic treatment plan. However, little is understood about the genetic reprogramming linked to clarithromycin exposure and the emergence of antibiotic resistance in H. pylori. Therefore, this study aims to identify compensatory mutations and biofilm formation associated with the development of clarithromycin resistance in H. pylori. Clarithromycin-sensitive H. pylori clinical isolates were induced to develop clarithromycin resistance through in vitro exposure to incrementally increasing concentration of the antibiotic. The genomes of the origin sensitive isolates (S), isogenic breakpoint (B), and resistant isolates (R) were sequenced. Single nucleotide variations (SNVs), and insertions or deletions (InDels) associated with the development of clarithromycin resistance were identified. Growth and biofilm production were also assessed. RESULTS: The S isolates with A2143G mutation in the 23S rRNA gene were successfully induced to be resistant. According to the data, antibiotic exposure may alter the expression of certain genes, including those that code for the Cag4/Cag protein, the vacuolating cytotoxin domain-containing protein, the sel1 repeat family protein, and the rsmh gene, which may increase the risk of developing and enhances virulence in H. pylori. Enhanced biofilm formation was detected among R isolates compared to B and S isolates. Furthermore, high polymorphism was also detected among the genes associated with biofilm production. CONCLUSIONS: Therefore, this study suggests that H. pylori may acquire virulence factors while also developing antibiotic resistance due to clarithromycin exposure.

4.
PLoS One ; 18(4): e0284043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37068057

RESUMO

Overgrowth of Candida yeasts in the oral cavity may result in the development of oral thrush in immunocompromised individuals. This study analyzed the diversity and richness of the oral mycobiota of patients clinically diagnosed with oral thrush (OT), follow-up of oral thrush patients after antifungal therapy (AT), and healthy controls (HC). Oral rinse and oral swab samples were collected from 38 OT patients, 21 AT patients, and 41 healthy individuals (HC). Pellet from the oral rinse and oral swab were used for the isolation of oral Candida yeasts on Brilliance Candida Agar followed by molecular speciation. ITS1 amplicon sequencing using Illumina MiSeq was performed on DNA extracted from the oral rinse pellet of 16 OT, 7 AT, and 7 HC oral rinse samples. Trimmed sequence data were taxonomically grouped and analyzed using the CLC Microbial Genomics Module workflow. Candida yeasts were isolated at significantly higher rates from oral rinse and swab samples of OT (68.4%, p < 0.001) and AT (61.9%, p = 0.012) patients, as compared to HC (26.8%). Predominance of Candida albicans specifically, was noted in OT (60.5%, p < 0.001) and AT (42.9%, p = 0.006) vs. HC (9.8%), while non-albicans Candida species was dominant in HC. Analysis of oral mycobiota from OT patients showed the presence of 8 phyla, 222 genera, and 309 fungal species. Low alpha diversity (Shannon index, p = 0.006; Chao-1 biased corrected index, p = 0.01), varied beta diversity (Bray-Curtis, p = 0.01986; Jaccard, p = 0.02766; Weighted UniFrac, p = 0.00528), and increased relative abundance of C. albicans (p = 3.18E-02) was significantly associated with the oral mycobiota of OT vs. HC. This study supported that C. albicans is the main etiological agent in oral thrush and highlights the association of fungal biodiversity with the pathophysiology of oral thrush.


Assuntos
Candidíase Bucal , Humanos , Candidíase Bucal/microbiologia , Candida , Candida albicans , Ágar , Antifúngicos
5.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328711

RESUMO

The presence of co-infections or superinfections with bacterial pathogens in COVID-19 patients is associated with poor outcomes, including increased morbidity and mortality. We hypothesized that SARS-CoV-2 and its components interact with the biofilms generated by commensal bacteria, which may contribute to co-infections. This study employed crystal violet staining and particle-tracking microrheology to characterize the formation of biofilms by Streptococcus pneumoniae and Staphylococcus aureus that commonly cause secondary bacterial pneumonia. Microrheology analyses suggested that these biofilms were inhomogeneous soft solids, consistent with their dynamic characteristics. Biofilm formation by both bacteria was significantly inhibited by co-incubation with recombinant SARS-CoV-2 spike S1 subunit and both S1 + S2 subunits, but not with S2 extracellular domain nor nucleocapsid protein. Addition of spike S1 and S2 antibodies to spike protein could partially restore bacterial biofilm production. Furthermore, biofilm formation in vitro was also compromised by live murine hepatitis virus, a related beta-coronavirus. Supporting data from LC-MS-based proteomics of spike-biofilm interactions revealed differential expression of proteins involved in quorum sensing and biofilm maturation, such as the AI-2E family transporter and LuxS, a key enzyme for AI-2 biosynthesis. Our findings suggest that these opportunistic pathogens may egress from biofilms to resume a more virulent planktonic lifestyle during coronavirus infections. The dispersion of pathogens from biofilms may culminate in potentially severe secondary infections with poor prognosis. Further detailed investigations are warranted to establish bacterial biofilms as risk factors for secondary pneumonia in COVID-19 patients.


Assuntos
Antibiose , Biofilmes , Coronavirus/fisiologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Staphylococcus aureus/fisiologia , Streptococcus pneumoniae/fisiologia , Animais , Coinfecção , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Interações Microbianas , Sorogrupo , Staphylococcus aureus/classificação , Streptococcus pneumoniae/classificação
6.
Exp Eye Res ; 211: 108734, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34428458

RESUMO

This study aimed to investigate the metabolite differences between patients with keratoconus and control subjects and identify potential serum biomarkers for keratoconus using a non-targeted metabolomics approach. Venous blood samples were obtained from patients with keratoconus (n = 20) as well as from age-, gender- and race-matched control subjects (n = 20). Metabolites extracted from serum were separated and analyzed by liquid chromatography/quadrupole time-of-flight mass spectrometer. Processing of raw data and analysis of the data files was performed using Agilent Mass Hunter Qualitative software. The identified metabolites were subjected to a principal component and hierarchical cluster analysis. Appropriate statistical tests were used to analyze the metabolomic profiling data. Together, the analysis revealed that the dehydroepiandrosterone sulfate from the steroidal hormone synthesis pathway was significantly upregulated in patients with keratoconus (p < 0.05). Also, a combination of eicosanoids from the arachidonic acid pathway, mainly prostaglandin F2α, prostaglandin A2, 16,16-dimethyl prostaglandin E2, and 5-hydroxyeicosatetraenoic acid were collectively up-regulated as a group in keratoconus patients (p < 0.05). On the other hand, glycerophospholipid PS(17:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)) was found to be significantly upregulated in the metabolomics profiles of control subjects (p < 0.05). The differently regulated metabolites provide insights into the pathophysiology of keratoconus and could potentially be used as biomarkers for keratoconus to aid in screening for individuals at risk hence, enabling early diagnosis and timely monitoring of disease.


Assuntos
Biomarcadores/sangue , Ácidos Hidroxieicosatetraenoicos/sangue , Ceratocone/sangue , Metabolômica/métodos , Adolescente , Adulto , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Desidroepiandrosterona/sangue , Dinoprosta/sangue , Dinoprostona/sangue , Feminino , Humanos , Ceratocone/diagnóstico , Masculino , Metaboloma/fisiologia , Pessoa de Meia-Idade , Prostaglandinas A/sangue , Espectrometria de Massas em Tandem , Adulto Jovem
7.
Microorganisms ; 9(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073047

RESUMO

The ongoing COVID-19 pandemic is a clear and present threat to global public health. Research into how the causative SARS-CoV-2 virus together with its individual constituent genes and proteins interact with target host cells can facilitate the development of improved strategies to manage the acute and long-term complications of COVID-19. In this study, to better understand the biological roles of critical SARS-CoV-2 proteins, we determined and compared the host transcriptomic responses of the HL-CZ human pro-monocytic cell line upon transfection with key viral genes encoding the spike S1 subunit, S2 subunit, nucleocapsid protein (NP), NSP15 (endoribonuclease), and NSP16 (2'-O-ribose-methyltransferase). RNA sequencing followed by gene set enrichment analysis and other bioinformatics tools revealed that host genes associated with topologically incorrect protein, virus receptor activity, heat shock protein binding, endoplasmic reticulum stress, antigen processing and presentation were up-regulated in the presence of viral spike S1 expression. With spike S2 expression, pro-monocytic genes associated with the interferon-gamma-mediated signaling pathway, regulation of phosphatidylinositol 3-kinase activity, adipocytokine signaling pathway, and insulin signaling pathway were down-regulated, whereas those associated with cytokine-mediated signaling were up-regulated. The expression of NSP15 induced the up-regulation of genes associated with neutrophil degranulation, neutrophil-mediated immunity, oxidative phosphorylation, prion disease, and pathways of neurodegeneration. The expression of NSP16 resulted in the down-regulation of genes associated with S-adenosylmethionine-dependent methyltransferase activity. The expression of NP down-regulated genes associated with positive regulation of neurogenesis, nervous system development, and heart development. Taken together, the complex transcriptomic alterations arising from these viral-host gene interactions offer useful insights into host genes and their pathways that potentially contribute to SARS-CoV-2 pathogenesis.

8.
Ann Neurol ; 89(3): 546-559, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33274480

RESUMO

OBJECTIVE: Gut microbiome alterations in Parkinson disease (PD) have been reported repeatedly, but their functional relevance remains unclear. Fecal metabolomics, which provide a functional readout of microbial activity, have scarcely been investigated. We investigated fecal microbiome and metabolome alterations in PD, and their clinical relevance. METHODS: Two hundred subjects (104 patients, 96 controls) underwent extensive clinical phenotyping. Stool samples were analyzed using 16S rRNA gene sequencing. Fecal metabolomics were performed using two platforms, nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry. RESULTS: Fecal microbiome and metabolome composition in PD was significantly different from controls, with the largest effect size seen in NMR-based metabolome. Microbiome and NMR-based metabolome compositional differences remained significant after comprehensive confounder analyses. Differentially abundant fecal metabolite features and predicted functional changes in PD versus controls included bioactive molecules with putative neuroprotective effects (eg, short chain fatty acids [SCFAs], ubiquinones, and salicylate) and other compounds increasingly implicated in neurodegeneration (eg, ceramides, sphingosine, and trimethylamine N-oxide). In the PD group, cognitive impairment, low body mass index (BMI), frailty, constipation, and low physical activity were associated with fecal metabolome compositional differences. Notably, low SCFAs in PD were significantly associated with poorer cognition and low BMI. Lower butyrate levels correlated with worse postural instability-gait disorder scores. INTERPRETATION: Gut microbial function is altered in PD, characterized by differentially abundant metabolic features that provide important biological insights into gut-brain pathophysiology. Their clinical relevance further supports a role for microbial metabolites as potential targets for the development of new biomarkers and therapies in PD. ANN NEUROL 2021;89:546-559.


Assuntos
Fezes/química , Microbioma Gastrointestinal/genética , Metabolômica , Doença de Parkinson/microbiologia , Idoso , Ceramidas/metabolismo , Cromatografia Líquida , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/microbiologia , Constipação Intestinal/metabolismo , Constipação Intestinal/microbiologia , Ácidos Graxos Voláteis/metabolismo , Feminino , Fragilidade/metabolismo , Fragilidade/microbiologia , Humanos , Masculino , Espectrometria de Massas , Metilaminas/metabolismo , Pessoa de Meia-Idade , Doença de Parkinson/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , RNA Ribossômico 16S/genética , Salicilatos/metabolismo , Comportamento Sedentário , Esfingosina/metabolismo , Magreza/metabolismo , Magreza/microbiologia , Ubiquinona/metabolismo
9.
Microb Pathog ; 152: 104614, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33202254

RESUMO

Candidiasis is the most common fungal infection associated with high morbidity and mortality among immunocompromised patients. The ability to form biofilm is essential for Candida albicans pathogenesis and drug resistance. In this study, the planktonic cell and biofilm proteomes of C. albicans SC5314 strain analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) were compared. In total, 280 and 449 proteins are annotated from the planktonic cell and biofilm proteomes, respectively. The biofilm proteome demonstrated significantly higher proportion of proteins associated with the endomembrane system, mitochondrion and cytoplasm than planktonic proteome. Among proteins detected, 143 and 207 biological processes are annotated, of which, 38 and 102 are specific to the planktonic cell and biofilm proteomes, respectively, while 105 are common biological processes. The specific biological processes of C. albicans planktonic cell proteome are associated with cell polarity, energy metabolism and nucleotide (purine) metabolism, oxido-reduction coenzyme metabolic process, monosaccharide and amino acid (methionine) biosynthesis, regulation of anatomical structure morphogenesis and cell cycling, and single organism reproduction. Meanwhile, regulation of cellular macromolecule biosynthesis and metabolism, transcription and gene expression are major biological processes specifically associated with C. albicans biofilm proteome. Biosynthesis of leucine, isoleucine, and thiocysteine are highlighted as planktonic-related pathways, whereas folate metabolism, fatty acid metabolism and biosynthesis of amino acids (lysine, serine and glycine) are highlighted as biofilm-related pathways. In summary, LC-MS-based proteomic analysis reveals different adaptative strategies of C. albicans via specific biological and metabolic processes for planktonic cell and biofilm lifestyles. The mass spectrometry data are available via ProteomeXchange with identifiers PXD007830 (for biofilm proteome) and PXD007831 (for planktonic cell proteome).


Assuntos
Fenômenos Biológicos , Candida albicans , Antifúngicos , Biofilmes , Cromatografia Líquida , Humanos , Proteômica , Espectrometria de Massas em Tandem
10.
Mov Disord ; 35(12): 2250-2260, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32894625

RESUMO

BACKGROUND: Helicobacter pylori (HP) infection has been associated with worse motor function in Parkinson's disease (PD). OBJECTIVE: We aimed to evaluate the effects of HP eradication on PD symptoms. METHODS: In this parallel-group, double-blind, randomized placebo-controlled, single-center trial, patients with PD with positive HP urea breath test and serology were block randomized (1:1) to receive standard eradication triple therapy or identically appearing placebo capsules for 1 week. Prespecified motor (International Parkinson and Movement Disorder Society Unified PD Rating Scale [MDS-UPDRS], timed tests, and home-based wearable sensor measurements), nonmotor (Leeds Dyspepsia Questionnaire and Montreal Cognitive Assessment), and quality-of-life (Parkinson's Disease Questionnaire-39) outcome measures were assessed at weeks 6, 12, 24, and 52. The primary outcome was the baseline-to-week 12 change in ON medication MDS-UPDRS motor scores. Lactulose-hydrogen breath testing for concomitant small intestinal bacterial overgrowth was performed at baseline and repeated at week 24, together with the urea breath test. RESULTS: A total of 310 patients were screened for eligibility and 80 were randomly assigned, of whom 67 were included in the full-analysis set (32 treatment group patients, 35 placebo patients). HP eradication did not improve MDS-UPDRS motor scores at week 12 (mean difference 2.6 points in favor of placebo, 95% confidence interval: -0.4 to 5.6, P = 0.089). There was no significant improvement in any motor, nonmotor, or quality-of-life outcome at weeks 12 and 52. Both the full-analysis and per-protocol analyses (based on eradication status) supported these conclusions. Small intestinal bacterial overgrowth status did not influence treatment results. CONCLUSIONS: HP eradication does not improve clinical outcomes in PD, suggesting that there is no justification for routine HP screening or eradication with the goal of improving PD symptoms. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Doença de Parkinson , Método Duplo-Cego , Infecções por Helicobacter/tratamento farmacológico , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Qualidade de Vida , Inquéritos e Questionários
11.
J Pain Res ; 12: 2755-2770, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31571979

RESUMO

PURPOSE: Most of the genetic variants that are reported to be associated with common pain phenotypes and analgesic use are common polymorphisms. The objective of our study was to identify new variants and investigate less common genetic variants that are usually not included in either small single-gene studies or high-throughput genotyping arrays. PATIENTS AND METHODS: From a cohort of 1075 patients who underwent a scheduled total abdominal hysterectomy, 92 who had higher self-rated pain scores and used more morphine were selected for the re-sequencing of 105 genes. RESULTS: We identified over 2400 variants in 104 genes. Most were intronic with frequencies >5%. There were 181 novel variants, of which 30 were located in exons: 17 nonsynonymous, 10 synonymous, 2 non-coding RNA, and 1 stop-gain. For known variants that are rare (population frequency <1%), the frequencies of 54 exonic variants and eight intronic variants for the sequenced samples were higher than the weighted frequencies in the Genome Aggregation Database for East and South Asians (P-values ranging from 0.000 to 0.046). Overall, patients who had novel and/or rare variants used more morphine than those who only had common variants. CONCLUSION: Our study uncovered novel variants in patients who reported higher pain and used more morphine. Compared with the general population, rare variants were more common in this group.

12.
Microorganisms ; 7(6)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31208001

RESUMO

The present study explored the differences in gastric microbiome between three distinct populations of Southeast Asia. These include the isolated Orang Asli population and modern Malaysians, as well as patients from Myanmar, the least developed country in the region. All 79 subjects recruited in this study had Helicobacter pylori infection. Based on alpha diversity analysis, Orang Asli had the richest and most diverse gastric microbiome, followed by Myanmar and modern Malaysian groups. Beta diversity analysis revealed significant separation of samples between different populations. These observations are likely to be associated with the level of modernization of each population. Our data further suggested increased bacterial species richness and diversity of the gastric microbiome in individuals who were less modernized, particularly in the Orang Asli group, could suppress the growth of H. pylori. In addition, there were significant variations in the gastric microbiome between modern Malaysians with different types of gastric diseases. Notably, Cutibacterium acnes was present at significantly greater abundance level in patients with non-ulcerative dyspepsia than those with peptic-ulcer diagnosis. This suggests that C. acnes may also play a role in gastritis besides H. pylori, which merits further investigation.

13.
J Orthop Surg (Hong Kong) ; 27(2): 2309499019850324, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31138005

RESUMO

BACKGROUND: Ceftaroline is a cephalosporin that is effective against methicillin-resistant Staphylococcus aureus (MRSA) infections. The objective of this study was to determine the feasibility of using ceftaroline-loaded Polymethyl methacrylate (PMMA) as antibiotic cement against MRSA versus vancomycin-loaded PMMA in an in vitro setting. METHODS: PMMA pellets were prepared with three separate concentrations of each of the two antibiotics tested. They were tested to determine the effect of increasing concentration of antibiotics on the biomechanical properties of PMMA and antibiotic activity by measuring the zone of inhibition and broth elution assay. RESULTS: Ceftaroline PMMA at 3 wt%, three-point bending was 37.17 ± 0.51 N ( p < 0.001) and axial loading was 41.95 N ± 0.51 ( p < 0.001). At 5-wt% vancomycin-PMMA, three-point bending was 41.65 ± 0.79 N ( p = 0.02) and axial loading was 49.49 ± 2.21 N ( p = 0.01). Stiffness of ceftroline-loaded PMMA in low and medium concentration was significantly higher than the vancomycin. The zone of inhibition for ceftaroline was higher than vancomycin. Ceftaroline at 3 wt% eluted up to 6 weeks (0.3 ± 0.1 µg/ml) above the minimum inhibitory concentration (MIC) and vancomycin at 2.5 wt% eluted up to 3 weeks, same as MIC, that is, 0.5 ± 0.0 µg/ml. CONCLUSIONS: Ceftaroline, loaded at similar concentrations as vancomycin into PMMA, is a more potent alternative based on its more favourable bioactivity and elution properties, while having a lesser effect on the mechanical properties of the cement. The use of 3-wt% ceftaroline as antibiotic laden PMMA against MRSA is recommended. It should be noted that this was an in vitro study and to determine the clinical efficacy would need prospective, controlled and randomized studies.


Assuntos
Cefalosporinas/uso terapêutico , Materiais Revestidos Biocompatíveis , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Polimetil Metacrilato , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/farmacologia , Antibacterianos/farmacologia , Fenômenos Biomecânicos , Humanos , Prótese Articular/efeitos adversos , Teste de Materiais , Testes de Sensibilidade Microbiana , Estudos Prospectivos , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/fisiopatologia , Infecções Estafilocócicas/microbiologia , Ceftarolina
14.
Gastroenterol Rep (Oxf) ; 7(1): 42-49, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30792865

RESUMO

BACKGROUND: Metronidazole is one of the first-line drugs of choice in the standard triple therapy used to eradicate Helicobacter pylori infection. Hence, the global emergence of metronidazole resistance in Hp poses a major challenge to health professionals. Inactivation of RdxA is known to be a major mechanism of conferring metronidazole resistance in H. pylori. However, metronidazole resistance can also arise in H. pylori strains expressing functional RdxA protein, suggesting that there are other mechanisms that may confer resistance to this drug. METHODS: We performed whole-genome sequencing on 121 H. pylori clinical strains, among which 73 were metronidazole-resistant. Sequence-alignment analysis of core protein clusters derived from clinical strains containing full-length RdxA was performed. Variable sites in each alignment were statistically compared between the resistant and susceptible groups to determine candidate genes along with their respective amino-acid changes that may account for the development of metronidazole resistance in H. pylori. RESULTS: Resistance due to RdxA truncation was identified in 34% of metronidazole-resistant strains. Analysis of core protein clusters derived from the remaining 48 metronidazole-resistant strains and 48 metronidazole-susceptible identified four variable sites significantly associated with metronidazole resistance. These sites included R16H/C in RdxA, D85N in the inner-membrane protein RclC (HP0565), V265I in a biotin carboxylase protein (HP0370) and A51V/T in a putative threonylcarbamoyl-AMP synthase (HP0918). CONCLUSIONS: Our approach identified new potential mechanisms for metronidazole resistance in H. pylori that merit further investigation.

16.
Phytomedicine ; 55: 31-39, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668441

RESUMO

BACKGROUND: Clausena excavata Burm.f. (Rutaceae) has been used for the treatment of stomach disorders including peptic ulcer. PURPOSE: In this study, we aimed to investigate dentatin isolated from C. excavata Burm.f., for anti-ulcer activity against ethanol ulcer model in rats. METHODS: Gastric acid output, ulcer index, serum profile, histological evaluation using Hematoxylin and eosin (HE), periodic acid Schiff base stainings and immunohistochemical localization for heat shock proteins 70 (HSP70) were all investigated. Possible involvement of reduced glutathione (GSH), lipid peroxidation, prostaglandin E2 (PGE2), superoxide dismutase (SOD) enzymes, radical scavenging, and anti-Helicobacter pylori activity were investigated. RESULTS: Dentatin showed anti-secretory activity against the pylorus ligature model and protected the gastric mucosa from ethanol ulceration, as revealed by the improved macroscopic and histological appearance. Dentatin significantly increased the gastric homogenate content of PGE2 GSH and SOD. Dentatin inhibited the lipid peroxidation as revealed by the reduced gastric content of malondialdehyde (MDA). Moreover, dentatin up-regulated HSP70 expression. However, dentatin showed insignificant anti-H. pylori activity. CONCLUSION: Dentatin possesses gastro-protective activity, which could be attributed to the anti-secretory, mucus production, anti-oxidant, and HSP70 activities.


Assuntos
Antiulcerosos/farmacologia , Antioxidantes/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Úlcera Gástrica/tratamento farmacológico , Animais , Clausena/química , Etanol/efeitos adversos , Feminino , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Glutationa/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Helicobacter pylori/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Muco/efeitos dos fármacos , Ratos Sprague-Dawley , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/patologia , Superóxido Dismutase/metabolismo
17.
J Antimicrob Chemother ; 74(1): 11-16, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403784

RESUMO

Objectives: Eradication of Helicobacter pylori is influenced by susceptibility to antimicrobial agents, elevated bacterial load and degree of acid inhibition, which can be affected by genotypes of drug-metabolizing enzymes [cytochrome P450 (CYP) 2C19 polymorphism]. Theoretically, the choice and dose of proton pump inhibitor may also influence the suppression of H. pylori infection. The CYP2C19 genotype has recently been found to have an impact on peptic ulcer healing, H. pylori eradication and therapeutic efficacy of proton pump inhibitors. Methods: Here, we investigated the impact of the CYP2C19 genotype polymorphism and the success of triple therapy (fluoroquinolones/metronidazole/clarithromycin) on antibiotic-resistant strains in eradicating H. pylori in human subjects with non-ulcer dyspepsia (NUD), in human subjects with peptic ulcer disease (PUD) and in asymptomatic human subjects (positive and negative for H. pylori infection). Results: Based on the CYP2C19 genotypes, determined by Droplet Digital PCR (ddPCR) analysis, we found 11.2%, 62.5% and 26.3% corresponding to rapid metabolizers, intermediate metabolizers and poor metabolizers, respectively. However, we did not find any significant effect for homozygous ABCB1 or CYP2C19*2 and CYP2C19*3 alleles. We detected several participants heterozygous for both ABCB1 and CYP2C19*2, CYP2C19*3 and CYP2C19*17 loci. The participants heterozygous for both ABCB1 and CYP2C19*2 and *3 loci should be defined as intermediate and poor metabolizers according to the haplotype analysis in the NUD, PUD and asymptomatic subjects. Conclusions: Consequently, fluoroquinolones/metronidazole/clarithromycin-based triple therapies can be used to eradicate H. pylori infection, if one does not know the CYP2C19 genotype of the patient.


Assuntos
Antibacterianos/uso terapêutico , Citocromo P-450 CYP2C19/genética , Resistência Microbiana a Medicamentos , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Polimorfismo Genético , Inibidores da Bomba de Prótons/uso terapêutico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimioterapia Combinada/métodos , Feminino , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
18.
PLoS One ; 13(12): e0208584, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30576312

RESUMO

Colorectal cancer (CRC) is ranked the third most common cancer in human worldwide. However, the exact mechanisms of CRC are not well established. Furthermore, there may be differences between mechanisms of CRC in the Asian and in the Western populations. In the present study, we utilized a liquid chromatography-mass spectrometry (LC-MS) metabolomic approach supported by the 16S rRNA next-generation sequencing to investigate the functional and taxonomical differences between paired tumor and unaffected (normal) surgical biopsy tissues from 17 Malaysian patients. Metabolomic differences associated with steroid biosynthesis, terpenoid biosynthesis and bile metabolism could be attributed to microbiome differences between normal and tumor sites. The relative abundances of Anaerotruncus, Intestinimonas and Oscillibacter displayed significant relationships with both steroid biosynthesis and terpenoid and triterpenoid biosynthesis pathways. Metabolites involved in serotonergic synapse/ tryptophan metabolism (Serotonin and 5-Hydroxy-3-indoleacetic acid [5-HIAA]) were only detected in normal tissue samples. On the other hand, S-Adenosyl-L-homocysteine (SAH), a metabolite involves in methionine metabolism and methylation, was frequently increased in tumor relative to normal tissues. In conclusion, this study suggests that local microbiome dysbiosis may contribute to functional changes at the cancer sites. Results from the current study also contributed to the list of metabolites that are found to differ between normal and tumor sites in CRC and supported our quest for understanding the mechanisms of carcinogenesis.


Assuntos
Bactérias/genética , Neoplasias Colorretais/patologia , Mucosa Intestinal/microbiologia , Metabolômica , Microbiota , RNA Ribossômico 16S/metabolismo , Adulto , Idoso , Bactérias/classificação , Bactérias/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Neoplasias Colorretais/microbiologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , S-Adenosil-Homocisteína/metabolismo , Análise de Sequência de DNA , Esteroides/biossíntese , Espectrometria de Massas em Tandem , Terpenos/química , Terpenos/metabolismo
19.
J Dig Dis ; 19(11): 674-677, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30307122

RESUMO

OBJECTIVE: The 7-day standard triple therapy (STT) gives unacceptablly low eradication rates of Helicobacter pylori (H. pylori). We aimed to examine whether extending STT from 7 days to 14 days or adding a bismuth compound to a 7-day STT would result in better eradication rates. METHODS: H. pylori-positive patients were assigned to Group A (7-day STT; rabeprazole 20 mg twice daily, amoxicillin 1 g twice daily, and clarithromycin 500 mg twice daily, for 7 days), Group B (7-day STT with bismuth; rabeprazole 20 mg twice daily, amoxicillin 1 g twice daily, clarithromycin 500 mg twice daily and bismuth subcitrate 240 mg twice daily, for 7 days) and Group C (14-day STT; rabeprazole 20 mg twice daily, amoxicillin 1 g twice daily, and clarithromycin 500 mg twice daily for 14 days). Eradication was tested using 13 C-UBT at least 4 weeks after the completion of therapy. RESULTS: A total of 364 patients were recruited. In the intention-to-treat analysis, eradication rates were 79.3% (96/121; 95% confidence interval [CI] 71.3-85.6%) for 7-day STT, 81.7% (98/120; 95% CI 73.8-87.6%) for 7-day STT with bismuth, and 88.6% (109/123; 95% CI 81.8-93.1%) for 14-day STT, respectively. Statistical significance was achieved between the 7-day and the 14-day STT treatment (P = 0.048). CONCLUSIONS: Adding bismuth to the 7-day STT did not result in an increase in the eradication rate. Extending the STT to 14 days, however, achieved a significantly higher eradication rate. Nevertheless, this did not achieve the targeted 90% eradication rate on intention-to-treat analysis.


Assuntos
Antibacterianos/administração & dosagem , Bismuto/administração & dosagem , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Amoxicilina/administração & dosagem , Amoxicilina/efeitos adversos , Amoxicilina/uso terapêutico , Antibacterianos/efeitos adversos , Antibacterianos/uso terapêutico , Bismuto/efeitos adversos , Bismuto/uso terapêutico , Claritromicina/administração & dosagem , Claritromicina/efeitos adversos , Claritromicina/uso terapêutico , Esquema de Medicação , Quimioterapia Combinada , Feminino , Humanos , Análise de Intenção de Tratamento , Masculino , Pessoa de Meia-Idade , Inibidores da Bomba de Prótons/administração & dosagem , Inibidores da Bomba de Prótons/efeitos adversos , Inibidores da Bomba de Prótons/uso terapêutico , Rabeprazol/administração & dosagem , Rabeprazol/efeitos adversos , Rabeprazol/uso terapêutico , Resultado do Tratamento , Adulto Jovem
20.
Sci Rep ; 8(1): 1409, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362474

RESUMO

The biofilm-forming-capability of Helicobacter pylori has been suggested to be among factors influencing treatment outcome. However, H. pylori exhibit strain-to-strain differences in biofilm-forming-capability. Metabolomics enables the inference of spatial and temporal changes of metabolic activities during biofilm formation. Our study seeks to examine the differences in metabolome of low and high biofilm-formers using the metabolomic approach. Eight H. pylori clinical strains with different biofilm-forming-capability were chosen for metabolomic analysis. Bacterial metabolites were extracted using Bligh and Dyer method and analyzed by Liquid Chromatography/Quadrupole Time-of-Flight mass spectrometry. The data was processed and analyzed using the MassHunter Qualitative Analysis and the Mass Profiler Professional programs. Based on global metabolomic profiles, low and high biofilm-formers presented as two distinctly different groups. Interestingly, low-biofilm-formers produced more metabolites than high-biofilm-formers. Further analysis was performed to identify metabolites that differed significantly (p-value < 0.005) between low and high biofilm-formers. These metabolites include major categories of lipids and metabolites involve in prostaglandin and folate metabolism. Our findings suggest that biofilm formation in H. pylori is complex and probably driven by the bacterium' endogenous metabolism. Understanding the underlying metabolic differences between low and high biofilm-formers may enhance our current understanding of pathogenesis, extragastric survival and transmission of H. pylori infections.


Assuntos
Biofilmes/crescimento & desenvolvimento , Helicobacter pylori/fisiologia , Metabolômica/métodos , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Helicobacter pylori/metabolismo , Análise de Componente Principal , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA