RESUMO
Dietary compounds, including micronutrients such as vitamin A and its metabolite retinoic acid, directly influence the development and function of the immune system. In this study, we show that either dietary deficiency of or supplementation with vitamin A had immunologic effects in mice that were fed these diets during their development (for 8 wk during the postweaning period). Deficient mice presented higher levels of interferon-γ, interleukin (IL)-6, transforming growth factor-ß, IL-17, and IL-10 in the gut-associated lymphoid tissues and draining lymph nodes, indicating a proinflammatory shift in the gut mucosa. Serum immunoglobulin G levels also were elevated in these mice. Conversely, supplemented mice showed higher frequencies of CD4+Foxp3+LAP+ regulatory T cells in gut lymphoid tissues and spleen, suggesting that vitamin A supplementation in the diet may be beneficial in pathologic situations such as inflammatory bowel diseases.
Assuntos
Suplementos Nutricionais , Intestinos/imunologia , Linfócitos T Reguladores/metabolismo , Vitamina A/farmacologia , Vitaminas/farmacologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Imunoglobulina G/sangue , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Tecido Linfoide/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta/metabolismoRESUMO
Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-ß - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice.