Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 8(3): 443-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25504838

RESUMO

Methyl N-phenyl carbamate was synthesized from aniline by using methyl formate as a green and efficient carbonylating agent. High yields were obtained at milder reaction conditions compared to the conventional CO/CH3 OH route. Studies on the reaction sequence led to suggest an alternative and more efficient route to the carbamate via formanilide as intermediate.


Assuntos
Compostos de Anilina/química , Carbamatos/síntese química , Carbono/química , Ésteres do Ácido Fórmico/química , Reciclagem , Técnicas de Química Sintética , Química Verde , Oxirredução
2.
Angew Chem Int Ed Engl ; 52(36): 9372-87, 2013 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-23881851

RESUMO

We summarize the catalytic synthesis of multiwall carbon nanotubes (MWCNTs). The current understanding of the reaction mechanism is presented, in particular the catalyst design for the CCVD process is analyzed. To complement that, kinetics and reaction engineering aspects are discussed along with the impact of the reaction and reactor operation on the product properties. All these issues are analyzed from the perspective of the industrial synthesis and implications for the application of carbon nanotubes. Carbon-nanotube technology is a perfect example of multi-scale development and covers challenges from the nanometer to the meter scale. Problems, methods, and solutions characteristic for different scales will be highlighted. The Co/Mn catalyst is used as reference as one of the first commercially used technologies for the scalable production of multiwall carbon nanotubes.

3.
Phys Chem Chem Phys ; 15(5): 1374-81, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22806331

RESUMO

A pure ZnO sample and a sample containing 3 mol% Al were prepared by (co)-precipitation as model materials for the oxidic support phase in Cu/ZnO/Al(2)O(3) methanol synthesis catalysts. The samples were characterized with respect to their crystal, defect and micro-structure using various methods (XRD, TEM, XPS, UV-vis spectroscopy, EPR, NMR). It was found that a significant fraction of the Al is incorporated into the ZnO lattice and enhances the defect chemistry of the material. The defect structure, however, was not stable under reducing conditions as applied in catalytic reactions. Al ions migrated towards the surface of the ZnO nanoparticles leading to formation of an Al-rich shell and an Al-depleted core. This process proceeds during the first 10-20 hours on stream and is associated with strong modification of the optical bandgap energy and the EPR signal of donor sites present in ZnO.

4.
Nat Nanotechnol ; 2(3): 156-61, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18654245

RESUMO

Both fullerenes and single-walled carbon nanotubes (SWNTs) exhibit many advantageous properties. Despite the similarities between these two forms of carbon, there have been very few attempts to physically merge them. We have discovered a novel hybrid material that combines fullerenes and SWNTs into a single structure in which the fullerenes are covalently bonded to the outer surface of the SWNTs. These fullerene-functionalized SWNTs, which we have termed NanoBuds, were selectively synthesized in two different one-step continuous methods, during which fullerenes were formed on iron-catalyst particles together with SWNTs during CO disproportionation. The field-emission characteristics of NanoBuds suggest that they may possess advantageous properties compared with single-walled nanotubes or fullerenes alone, or in their non-bonded configurations.


Assuntos
Cristalização/métodos , Fulerenos/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
5.
J Phys Chem B ; 110(5): 2108-15, 2006 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-16471791

RESUMO

The (n,m) population distribution of single-walled carbon nanotubes obtained on supported CoMo catalysts has been determined by photoluminescence and optical absorption. It has been found that the (n,m) distribution can be controlled by varying the gaseous feed composition, the reaction temperature, and the type of catalyst support used. When using CO as a feed over CoMo/SiO2 catalysts, increasing the synthesis temperature results in an increase in nanotube diameter, without a change in the chiral angle. By contrast, by changing the support from SiO2 to MgO, nanotubes with similar diameter but different chiral angles are obtained. Finally, keeping the same reaction conditions but varying the composition of the gaseous feed results in different (n,m) distribution. The clearly different distributions obtained when varying catalysts support and/or reaction conditions demonstrate that the (n,m) distribution is a result of differences in the growth kinetics, which in turn depends on the nanotube cap-metal cluster interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA