Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 2): 114569, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244439

RESUMO

Maghemite (γ-Fe2O3) nanoparticles (MNPs) were functionalized with 3-aminopropyltriethoxysilane (APTES) to give APTES@Fe2O3 (AMNP) which was then reacted with diethylenetriamine-pentaacetic acid (DTPA) to give a nanohybrid DTPA-APTES@Fe2O3 (DAMNP). Nano-isothermal titration calorimetry shows that DTPA complexation with uranyl ions in water is exothermic and has a stoichiometry of two DTPA to three uranyl ions. Density functional theory calculations indicate the possibility of several complexes between DTPA and UO22+ with different stoichiometries. Interactions between uranyl ions and DAMNP functional groups are revealed by X-photoelectron and Fourier transform infrared spectroscopies. Spherical aberration-corrected Scanning Transmission Electron Microscopy visualizes uranium on the particle surface. Adsorbent performance metrics were evaluated by batch adsorption studies under different conditions of pH, initial uranium concentration and contact time, and the results expressed in terms of equilibrium adsorption capacities (qe) and partition coefficients (PC). By either criterion, performance increases from MNP to AMNP to DAMNP, with the maximum uptake at pH 5.5 in all cases: MNP, qe = 63 mg g-1, PC = 127 mg g-1 mM-1; AMNP, qe = 165 mg g-1, PC = 584 mg g-1 mM-1; DAMNP, qe = 249 mg g-1, PC = 2318 mg g-1 mM-1 (at 25 °C; initial U concentration 0.63 mM; 5 mg adsorbent in 10 mL of solution; contact time, 3 h). The pH maximum is related to the predominance of mono- and di-cationic uranium species. Uptake by DAMNPs follows a pseudo-first-order or pseudo-second-order kinetic model and fits a variety of adsorption models. The maximum adsorption capacity for DAMNPs is higher than for other functionalized magnetic nanohybrids. This adsorbent can be regenerated and recycled for at least 10 cycles with less than 10% loss in activity, and shows high selectivity. These findings suggest that DAMNP could be a promising adsorbent for the recovery of uranium from nuclear wastewaters.


Assuntos
Urânio , Águas Residuárias , Adsorção , Águas Residuárias/química , Urânio/análise , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Cátions , Fenômenos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro , Ácido Pentético , Concentração de Íons de Hidrogênio
2.
Theranostics ; 12(5): 2383-2405, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265216

RESUMO

Microorganisms grouped together into spatially-organized communities called biofilms, are the cause of dramatic chronic infections in plants, animals and humans. In this review, the characteristics of biofilms and their interactions with antimicrobials are first described. Limitations of antibiotic treatments are discussed, and state-of-the-art alternative approaches based on the use of polymer, lipid, organic, inorganic and hybrid nanoparticles are presented, highlighting recent achievements in the application of nanomaterials to the field of theranostics for the eradication of biofilm. The aim of this review is to present a complete vision of nanobiotechnology-based approaches for eradicating bacterial biofilms and fighting antimicrobial tolerance.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Nanopartículas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Biofilmes , Nanotecnologia
3.
Magn Reson Chem ; 58(10): 957-968, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32529717

RESUMO

A corona, consisting of 18 carbon atoms bearing 12 hydroxy groups in a continuous hydrogen-bonded chain, is built up by alternating degenerate conformations of alternating alkane-1,2-diol and 1,3-diol motifs. Geometries, proton nuclear magnetic resonance shifts and interaction energies for the dodecahydroxycyclo-octadecane and selected fragments are determined by density functional calculations at the B3LYP/6-311+G(d,p) level. Cooperative effects of O-H⋯O-H bonding are evident from the simple juxtaposition of these two motifs with a common OH group in butane-1,2,4-triol conformers. Bracketing a 1,2-diol motif with two 1,3-diol motifs in hexane-1,3,4,6-tetrol leads to a structure in which the 1,2-diol motif displays a bond critical point for hydrogen bonding. This is associated with enhancement of the shift of the hydrogen-bonded OH proton and of the corresponding H⋯O interaction energy. The full corona has a complete outer ring of O-H⋯O-H bond paths, and an inner ring of bond paths, due to C-H⋯H-C hydrogen-hydrogen bonding, which result in a central ring critical point. The topological O-H⋯O-H hydrogen bond, never seen in simple alkane-1,2-diols, is associated with cooperative enhancement of the H⋯O interaction energy, but this is not a necessary condition for a bond path: values for topological C-H⋯H-C hydrogen-hydrogen bonds can be as low as -0.4 kcal mol-1 .

4.
Magn Reson Chem ; 58(7): 666-684, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32201981

RESUMO

Proton nuclear magnetic resonance chemical shifts and atom-atom interaction energies for alkanepolyols with 1,2-diol and 1,3-diol repeat units, and for their 1:1 pyridine complexes, are computed by density functional theory calculations. In the 1,3-polyols, based on a tG'Gg' repeat unit, the only important intramolecular hydrogen bonding interactions are O─H… OH. By quantum theory of atoms in molecules analysis of the electron density, unstable bond and ring critical points are found for such interactions in 1,2-polyols with tG'g repeat units, from butane-1,2,3,4-tetrol onwards and in their pyridine complexes from propane-1,2,3-triol onwards. Several features (OH proton shifts and charges, and interaction energies computed by the interacting quantum atoms approach) are used to monitor the dependence of cooperativity on chain length: This is much less regular in 1,2-polyols than in 1,3-polyols and by most criteria has a higher damping factor. Well defined C─H… OH interactions are found in butane-1,2,3,4-tetrol and higher members of the 1,2-polyol series, as well as in their pyridine complexes: There is no evidence for cooperativity with O─H… OH bonding. For the 1,2-polyols, there is a tenuous empirical relationship between the existence of a bond critical point for O─H… OH hydrogen bonding and the interaction energies of competing exchange channels, but the primary/secondary ratio is always less than unity.

5.
Theranostics ; 9(20): 5924-5936, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534529

RESUMO

Targeting TRAIL (Tumor necrosis factor (TNF)-Related Apoptosis-Inducing Ligand) receptors for cancer therapy remains challenging due to tumor cell resistance and poor preparations of TRAIL or its derivatives. Herein, to optimize its therapeutic use, TRAIL was grafted onto iron oxide nanoclusters (NCs) with the aim of increasing its pro-apoptotic potential through nanoparticle-mediated magnetic hyperthermia (MHT) or photothermia (PT). Methods: The nanovector, NC@TRAIL, was characterized in terms of size, grafting efficiency, and potential for MHT and PT. The therapeutic function was assessed on a TRAIL-resistant breast cancer cell line, MDA-MB-231, wild type (WT) or TRAIL-receptor-deficient (DKO), by combining complementary methylene blue assay and flow cytometry detection of apoptosis and necrosis. Results: Combined with MHT or PT under conditions of "moderate hyperthermia" at low concentrations, NC@TRAIL acts synergistically with the TRAIL receptor to increase the cell death rate beyond what can be explained by the mere global elevation of temperature. In contrast, all results are consistent with the idea that there are hotspots, close to the nanovector and, therefore, to the membrane receptor, which cause disruption of the cell membrane. Furthermore, nanovectors targeting other membrane receptors, unrelated to the TNF superfamily, were also found to cause tumor cell damage upon PT. Indeed, functionalization of NCs by transferrin (NC@Tf) or human serum albumin (NC@HSA) induces tumor cell killing when combined with PT, albeit less efficiently than NC@TRAIL. Conclusions: Given that magnetic nanoparticles can easily be functionalized with molecules or proteins recognizing membrane receptors, these results should pave the way to original remote-controlled antitumoral targeted thermal therapies.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos/química , Compostos Férricos/farmacologia , Hipertermia Induzida/métodos , Ligante Indutor de Apoptose Relacionado a TNF/química , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Microscopia Eletrônica de Transmissão , Fator de Necrose Tumoral alfa/metabolismo
6.
Magn Reson Chem ; 57(12): 1121-1135, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31218728

RESUMO

Hydrogen-hydrogen C─H… H─C bonding between the bay-area hydrogens in biphenyls, and more generally in congested alkanes, very strained polycyclic alkanes, and cis-2-butene, has been investigated by calculation of proton nuclear magnetic resonance (NMR) shifts and atom-atom interaction energies. Computed NMR shifts for all protons in the biphenyl derivatives correlate very well with experimental data, with zero intercept, unit slope, and a root mean square deviation of 0.06 ppm. For some congested alkanes, there is generally good agreement between computed values for a selected conformer and the experimental data, when it is available. In both cases, the shift of a given proton or pair of protons tends to increase with the corresponding interaction energy. Computed NMR shift differences for methylene protons in polycyclic alkanes, where one is involved in a very short contact ("in") and the other is not ("out"), show a rough correlation with the corresponding C─H… H─C exchange energies. The "in" and "in,in" isomers of selected aza- and diaza-cycloalkanes, respectively, are X─H… H─N hydrogen bonded, whereas the "out" and "in,out" isomers display X─H… N hydrogen bonds (X = C or N). Oxa-alkanes and the "in" isomers of aza-oxa-alkanes are X─H… O hydrogen bonded. There is a very good general correlation, including both N─H… H─Y (Y = C or N) and N─H… Z (Z = N or O) interactions, for NH proton shifts against the exchange energy. For "in" CH protons, the data for the different C─H… H─Y and C─H… Z interactions are much more dispersed and the overall shift/exchange energy correlation is less satisfactory.

7.
Magn Reson Chem ; 56(8): 748-766, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29498091

RESUMO

Density functional theory calculations are used to compute proton nuclear magnetic resonance (NMR) chemical shifts, interatomic distances, atom-atom interaction energies, and atomic charges for partial structures and conformers of α-D-glucopyranose, ß-D-glucopyranose, and α-D-galactopyranose built up by introducing OH groups into 2-methyltetrahydropyran stepwisely. For the counterclockwise conformers, the most marked effects on the NMR shift and the charge on the OH1 proton are produced by OH2, those of OH3 and OH4 being somewhat smaller. This argues for a diminishing cooperative effect. The effect of OH6 depends on the configuration of the hydroxymethyl group and the position, axial or equatorial, of OH4, which controls hydrogen bonding in the 1,3-diol motif. Variations in the interaction energies reveal that a "new" hydrogen bond is sometimes formed at the expense of a preexisting one, probably due to geometrical constraints. Whereas previous work showed that complexing a conformer with pyridine affects only the nearest neighbour, successive OH groups increase the interaction energy of the N⋯H1 hydrogen bond and reduce its length. Analogous results are obtained for the clockwise conformers. The interaction energies for C-H⋯OH hydrogen bonding between axial CH protons and OH groups in certain conformers are much smaller than for O-H⋯OH bonds but they are largely covalent, whereas those of the latter are predominantly coulombic. These interactions are modified by complexation with pyridine in the same way as O-H⋯OH interactions: the computed NMR shifts of the CH protons increase, the atom-atom distances are shorter, and interaction energies are enhanced.


Assuntos
Galactose/química , Glucose/química , Teoria da Densidade Funcional , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/estatística & dados numéricos , Modelos Químicos , Conformação Molecular , Piridinas/química , Termodinâmica
8.
Magn Reson Chem ; 55(10): 893-901, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28432857

RESUMO

The idea that hydrogen bond cooperativity is responsible for the structure and reactivity of carbohydrates is examined. Density functional theory and gauge-including atomic orbital calculations on the known conformers of the α and ß anomers of d-glucopyranose in the gas phase are used to compute proton NMR chemical shifts and interatomic distances, which are taken as criteria for probing intramolecular interactions. Atom-atom interaction energies are calculated by the interacting quantum atoms approach in the framework of the quantum theory of atoms in molecules. Association of OH1 in the counterclockwise conformers with a strong acceptor, pyridine, is accompanied by cooperative participation from OH2, but there is no significant change in the bonding of the two following 1,2-diol motifs. The OH6... O5 (G-g+/cc/t and G+g-/cc/t conformers) or OH6... O4 (Tg+/cc/t conformer) distance is reduced, and the OH6 proton is slightly deshielded. In the latter case, this shortening and the associated increase in the OH6-O4 interaction energy may be interpreted as a small cooperative effect, but intermolecular interaction energies are practically the same for all three conformers. In most of the pyridine complexes, one ortho proton interacts with the endocyclic oxygen O5. Analogous results are obtained when the clockwise conformer, G-g+/cl/g-, detected for the α anomer, and a hypothetical conformer, Tt/cl/g-, are complexed with pyridine through OH6. Generally, the cooperative effect does not go beyond the first two OH groups of a chain. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Glucose/química , Espectroscopia de Ressonância Magnética , Teoria Quântica , Glucofosfatos/química , Ligação de Hidrogênio , Conformação Molecular , Estrutura Molecular
9.
Magn Reson Chem ; 54(10): 805-814, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27247256

RESUMO

Proton nuclear magnetic resonance (NMR) shifts of the free diol and of its 1 : 1 and 1 : 2 hydrogen-bonded complexes with pyridine have been computed for five symmetrical alkane diols on the basis of density functional theory, by applying the gauge-including atomic orbital method to geometry-optimized conformers. For certain conformers, intramolecular OH···OH interactions, evidenced by high NMR OH proton shifts, are further enhanced on going from the free diol to the corresponding 1 : 1 diol/pyridine complex. This is confirmed by atoms-in-molecules and non-covalent interaction plots. The computed OH and CH proton shifts for the diol and the two complexes correlate well with values obtained by analysing data from the NMR titration of the diols in benzene against pyridine. Shift values for the diols in neat pyridine are calculated by weighting the shifts of the various protons in the three forms (free diol, 1 : 1 and 1 : 2 diol/pyridine complexes) according to the experimentally determined association constants. The results are in good agreement with those observed, and after empirical scaling, the root mean square difference is 0.18 ppm. Copyright © 2016 John Wiley & Sons, Ltd.

10.
Magn Reson Chem ; 54(1): 28-38, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26256675

RESUMO

Proton nuclear magnetic resonance (NMR) shifts of aliphatic alcohols in hydrogen bonding solvents have been computed on the basis of density functional theory by applying the gauge-including atomic orbital method to geometry-optimized alcohol/solvent complexes. The OH proton shifts and hydrogen bond distances for methanol or ethanol complexed with pyridine depend very much on the functional employed and very little on the basis set, provided it is sufficiently large to give the correct quasi-linear hydrogen bond geometry. The CH proton shifts are insensitive to both the functional and the basis set. NMR shifts for all protons in several alcohol/pyridine complexes are calculated at the Perdew, Burke and Ernzerhof PBE0/cc-pVTZ//PBE0/6-311 + G(d,p) level in the gas phase. The results correlate with the shifts for the pyridine-complexed alcohols, determined by analysing data from the NMR titration of alcohols against pyridine. More pragmatically, computed shifts for a wider range of alcohols correlate with experimental shifts in neat pyridine. Shifts for alcohols in dimethylsulfoxide, based on the corresponding complexes in the gas phase, correlate well with the experimental values, but the overall root mean square difference is high (0.23 ppm), shifts for the OH, CHOH and other CH protons being systematically overestimated, by averages of 0.42, 0.21 and 0.06 ppm, respectively. If the computed shifts are corrected accordingly, a very good correlation is obtained with a gradient of 1.00 ± 0.01, an intercept of 0.00 ± 0.02 ppm and a root mean square difference of 0.09 ppm. This is a modest improvement on the result of applying the CHARGE programme to a slightly different set of alcohols. Some alcohol complexes with acetone and acetonitrile were investigated both in the gas phase and in a continuum of the relevant solvent.

11.
Magn Reson Chem ; 52(12): 745-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25199903

RESUMO

Proton nuclear magnetic resonance (NMR) shifts of aliphatic alcohols in chloroform have been computed on the basis of density functional theory, the solvent being included by the integral-equation-formalism polarisable continuum model of Gaussian 09. Relative energies of all conformers are calculated at the Perdew, Burke and Ernzerhof (PBE)0/6-311+G(d,p) level, and NMR shifts by the gauge-including atomic orbital method with the PBE0/6-311+G(d,p) geometry and the cc-pVTZ basis set. The 208 computed CH proton NMR shifts for 34 alcohols correlate very well with the experimental values, with a gradient of 1.00 ± 0.01 and intercept close to zero; the overall root mean square difference (RMSD) is 0.08 ppm. Shifts for CH protons of diols in chloroform are well correlated with the theoretical values for (isotropic) benzene, with similar gradient and intercept (1.02 ± 0.01, -0.13 ppm), but the overall RMSD is slightly higher, 0.12 ppm. This approach generally gives slightly better results than the CHARGE model of Abraham et al. The shifts of unsaturated alcohols in benzene have been re-examined with Gaussian 09, but the overall fit for CH protons is not improved, and OH proton shifts are worse. Shifts of vinyl protons in alkenols are systematically overestimated, and the correlation of computed shifts against the experimental data for unsaturated alcohols follows a quadratic equation. Splitting the 20 compounds studied into two sets, and applying empirical scaling based on the quadratic for the first set to the second set, gives an RMSD of 0.10 ppm. A multi-standard approach gives a similar result.

12.
Magn Reson Chem ; 52(3): 87-97, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24519848

RESUMO

The proton nuclear magnetic resonance (NMR) spectra of butane-1,4-diol, pentane-1,4-diol, (S,S)-hexane-2,5-diol, 2,5-dimethylhexane-2,5-diol and cyclohexane-1,4-diols (cis and trans) in benzene and some other solvents have been analysed. The conformer distribution and the NMR shifts of these diols in benzene have been computed on the basis of the density functional theory, the solvent being included by means of the integral-equation-formalism polarizable continuum model implemented in Gaussian 09. Relative Gibbs energies of all conformers are calculated at the Perdew, Burke and Ernzerhof (PBE)0/6-311+G(d,p) level and NMR shifts by the gauge-including atomic orbital method with the PBE0/6-311+G(d,p) geometry and the cc-pVTZ basis set. Vicinal three-bond coupling constants for the acyclic diols are calculated from the relative conformer populations, the geometries and generalized Karplus equations developed by Altona's group; these correlate well with the experimental values. The solvent dependence of coupling constants for butane-1,4-diol is attributed to conformational change. Coupling constants for the rigid cyclohexane-1,4-diols do not change with solvent and are readily explained in terms of their geometries. The NMR shifts of hydrogen-bonded protons in individual conformers of alkane-1,n-diols show a very rough correlation with the OH · · · OH distances. The computed overall NMR shifts for CH protons in 1,2-diols, 1,3-diols and 1,4-diols are systematically high but correlate very well with the experimental values, with a gradient of 1.07 ± 0.01; those for OH protons correlate less well.


Assuntos
Butileno Glicóis/química , Teoria Quântica , Espectroscopia de Ressonância Magnética/normas , Estrutura Molecular , Prótons , Padrões de Referência
13.
Magn Reson Chem ; 51(8): 469-81, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23784999

RESUMO

The proton nuclear magnetic resonance (NMR) spectra of propane-1,3-diol, 2-methylpropane-1,3-diol, 2,2-dimethylpropane-1,3-diol, butane-1,3-diol, 3-methylbutane-1,3-diol, pentane-2,4-diols (dl and meso), 2-methylpentane-2,4-diol and cyclohexane-1,3-diols (cis and trans) in benzene have been analysed. The conformer distribution and the NMR shifts of these diols have been computed on the basis of density functional theory, the solvent being included by means of the integral equation formalism phase continuum model (IEFPCM) implemented in Gaussian 09. Relative Gibbs energies of all conformers are calculated at the Perdew, Burke and Ernzerhof (PBE)0/6-311 + G(d,p) level, and NMR shifts by the gauge-including atomic orbital method with the PBE0/6-311 + G(d,p) geometry and the cc-pVTZ basis set. Vicinal coupling constants for 1,2- and 1,3-diols are rationalised in terms of relative conformer populations and geometries. The NMR shifts of hydrogen-bonded protons in individual conformers of alkane-1,n-diols show a very rough correlation with the OH⋯OH distances. The computed overall NMR shifts for CH protons in 1,2- and 1,3-diols are systematically high but correlate very well with the experimental values, with a gradient of 1.07 ± 0.01. Some values for nonequivalent methylene protons in 1,3-diols are reversed, calculation giving enhanced values for the proton anti to the COH bonds. Errors in the NMR shifts computed for the OH protons of nonsymmetrical diols appear to be related to relative populations of conformers where one or other of the OH groups is the donor. Some results based on the second-order Møller-Plesset approach, the Becke three-parameter Lee-Yang-Parr method and on the IEFPCM solvation model implemented in Gaussian 03 are included.


Assuntos
Álcoois/química , Benzeno/química , Teoria Quântica , Espectroscopia de Ressonância Magnética/normas , Estrutura Molecular , Prótons , Padrões de Referência
14.
Magn Reson Chem ; 51(1): 32-41, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23169263

RESUMO

The proton NMR spectra of several 1,2-diols in benzene have been analysed so as to associate each magnetically nonequivalent proton with its chemical shift. The shifts and coupling constants of the OH and methylene protons of ethane-1,2-diol have been determined in a wide range of solvents. The conformer distribution and the proton NMR shifts of these 1,2-diols in benzene have been computed on the basis of density functional theory. The solvent is included using the integral-equation-formalism polarizable continuum model implemented in Gaussian 09. Relative Gibbs energies for all stable conformers are calculated at the Perdew, Burke and Enzerhof (PBE)0/6-311 + G(d,p) level, and shifts are calculated using the gauge-including atomic orbital method with the PBE0/6-311 + G(d,p) geometry but using the cc-pVTZ basis set. Previous calculations on ethane-1,2-diol and propane-1,2-diol have been corrected and extended. New calculations on tert-butylethane-1,2-diol, phenylethane-1,2-diol, butane-2,3-diols (dl and meso) and cyclohexane-1,2-diols (cis and trans) are presented. Overall, the computed NMR shifts are in good agreement with experimental values for the OH protons but remain systematically high for CH protons. Some results based on the Gaussian 03 solvation model are included for comparison.


Assuntos
Benzeno/química , Etilenoglicol/química , Espectroscopia de Ressonância Magnética/métodos , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA