Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895324

RESUMO

Protein-energy malnutrition (PEM) is a risk factor for developing visceral leishmaniasis (VL). However, the impact on adaptive immunity during infection is unknown. To study the effect of malnutrition on chronic VL, we used a polynutrient-deficient diet (deficient protein, energy, zinc, and iron), which mimics moderate human malnutrition, followed by Leishmania infantum infection. The polynutrient-deficient diet leads to growth stunting and reduced mass of visceral organs. Malnourished-infected mice harbored more parasites in the spleen and liver, had a reduced number of T lymphocytes, reduced production of IFN-γ by T cells, and exhibited enhanced IL-10 production. To test whether IL-10 blockade would lessen disease in the malnourished mice, we treated infected mice with monoclonal antibody α-IL-10R. α-IL-10R treatment reduced the parasite number of malnourished mice, restored the number of T cells producing IFN-γ, and enhanced hepatic granuloma formation. Our results indicate that malnutrition increases VL susceptibility due to a defective IFN-γ-mediated immunity attributable to increased IL-10 production. Author Summary: Malnutrition contributes to the development of VL. Despite the advances regarding this association, how malnutrition affects the adaptive immune mechanisms in VL is still unclear. We found that malnutrition disrupts the ability to control parasite replication in the spleen and liver in VL due to defective IFN-γ-mediated immunity, reduced hepatic granuloma formation, and enhanced IL-10 production. Blocking IL-10R signaling restored the protective mechanisms to control parasite replication in the malnourished mice without interfering with the undernutrition state. Thus, we demonstrate that malnutrition disrupts the adaptive immunity against VL due to an aberrant IL-10 production. Understanding the association between malnutrition and VL will provide insights into therapeutic approaches.

2.
PLoS Pathog ; 20(5): e1012211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709823

RESUMO

Cytolytic CD8+ T cells mediate immunopathology in cutaneous leishmaniasis without controlling parasites. Here, we identify factors involved in CD8+ T cell migration to the lesion that could be targeted to ameliorate disease severity. CCR5 was the most highly expressed chemokine receptor in patient lesions, and the high expression of CCL3 and CCL4, CCR5 ligands, was associated with delayed healing of lesions. To test the requirement for CCR5, Leishmania-infected Rag1-/- mice were reconstituted with CCR5-/- CD8+ T cells. We found that these mice developed smaller lesions accompanied by a reduction in CD8+ T cell numbers compared to controls. We confirmed these findings by showing that the inhibition of CCR5 with maraviroc, a selective inhibitor of CCR5, reduced lesion development without affecting the parasite burden. Together, these results reveal that CD8+ T cells migrate to leishmanial lesions in a CCR5-dependent manner and that blocking CCR5 prevents CD8+ T cell-mediated pathology.


Assuntos
Linfócitos T CD8-Positivos , Movimento Celular , Leishmaniose Cutânea , Receptores CCR5 , Animais , Receptores CCR5/metabolismo , Receptores CCR5/imunologia , Linfócitos T CD8-Positivos/imunologia , Camundongos , Humanos , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Antagonistas dos Receptores CCR5/farmacologia , Maraviroc/farmacologia , Feminino
3.
bioRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873253

RESUMO

Cytolytic CD8+ T cells mediate immunopathology in cutaneous leishmaniasis without controlling parasites. Here, we identify factors involved in CD8+ T cell migration to the lesion that could be targeted to ameliorate disease severity. CCR5 was the most highly expressed chemokine receptor in patient lesions, and the high expression of CCL3 and CCL4, CCR5 ligands, was associated with delayed healing of lesions. To test the requirement for CCR5, Leishmania-infected Rag1-/- mice were reconstituted with CCR5-/- CD8+ T cells. We found that these mice developed smaller lesions accompanied by a reduction in CD8+ T cell numbers compared to controls. We confirmed these findings by showing that the inhibition of CCR5 with maraviroc, a selective inhibitor of CCR5, reduced lesion development without affecting the parasite burden. Together, these results reveal that CD8+ T cells migrate to leishmanial lesions in a CCR5-dependent manner and that blocking CCR5 prevents CD8+ T cell-mediated pathology.

4.
PLoS Pathog ; 19(3): e1011230, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36940219

RESUMO

In Brazil, Leishmania braziliensis is the main causative agent of the neglected tropical disease, cutaneous leishmaniasis (CL). CL presents on a spectrum of disease severity with a high rate of treatment failure. Yet the parasite factors that contribute to disease presentation and treatment outcome are not well understood, in part because successfully isolating and culturing parasites from patient lesions remains a major technical challenge. Here we describe the development of selective whole genome amplification (SWGA) for Leishmania and show that this method enables culture-independent analysis of parasite genomes obtained directly from primary patient skin samples, allowing us to circumvent artifacts associated with adaptation to culture. We show that SWGA can be applied to multiple Leishmania species residing in different host species, suggesting that this method is broadly useful in both experimental infection models and clinical studies. SWGA carried out directly on skin biopsies collected from patients in Corte de Pedra, Bahia, Brazil, showed extensive genomic diversity. Finally, as a proof-of-concept, we demonstrated that SWGA data can be integrated with published whole genome data from cultured parasite isolates to identify variants unique to specific geographic regions in Brazil where treatment failure rates are known to be high. SWGA provides a relatively simple method to generate Leishmania genomes directly from patient samples, unlocking the potential to link parasite genetics with host clinical phenotypes.


Assuntos
Genoma de Protozoário , Leishmaniose Cutânea , Parasitologia , Pele , Genoma de Protozoário/genética , Humanos , Genética Populacional , Pele/parasitologia , Brasil , Leishmaniose Cutânea/parasitologia , Parasitologia/métodos , Leishmania braziliensis/genética
5.
PLoS Pathog ; 9(3): e1003243, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555256

RESUMO

Leishmaniasis, resulting from infection with the protozoan parasite Leishmania, consists of a wide spectrum of clinical manifestations, from healing cutaneous lesions to fatal visceral infections. A particularly severe form of cutaneous leishmaniasis, termed mucosal leishmaniasis, exhibits decreased IL-10 levels and an exaggerated inflammatory response that perpetuates the disease. Using a mouse model of leishmaniasis, we investigated what cytokines contribute to increased pathology when IL-10-mediated regulation is absent. Leishmania major infected C57BL/6 mice lacking IL-10 regulation developed larger lesions than controls, but fewer parasites. Both IFN-γ and IL-17 levels were substantially elevated in mice lacking the capacity to respond to IL-10. IFN-γ promoted an increased infiltration of monocytes, while IL-17 contributed to an increase in neutrophils. Surprisingly, however, we found that IFN-γ did not contribute to increased pathology, but instead regulated the IL-17 response. Thus, blocking IFN-γ led to a significant increase in IL-17, neutrophils and disease. Similarly, the production of IL-17 by cells from leishmaniasis patients was also regulated by IL-10 and IFN-γ. Additional studies found that the IL-1 receptor was required for both the IL-17 response and increased pathology. Therefore, we propose that regulating IL-17, possibly by downregulating IL-1ß, may be a useful approach for controlling immunopathology in leishmaniasis.


Assuntos
Interleucina-17/imunologia , Leishmania major/fisiologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/patologia , Animais , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Interferon gama/sangue , Interferon gama/imunologia , Interleucina-10/deficiência , Interleucina-10/genética , Interleucina-17/sangue , Interleucina-1beta/metabolismo , Leishmania major/patogenicidade , Leishmaniose Cutânea/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Infiltração de Neutrófilos
6.
PLoS Negl Trop Dis ; 6(10): e1858, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23094119

RESUMO

While C57BL/6 mice infected in the ear with L. major mount a vigorous Th1 response and resolve their lesions, the Th1 response in C57BL/6 mice infected with L. mexicana is more limited, resulting in chronic, non-healing lesions. The aim of this study was to determine if the limited immune response following infection with L. mexicana is related to a deficiency in the ability of monocyte-derived dendritic cells (mo-DCs) to prime a sufficient Th1 response. To address this issue we compared the early immune response following L. mexicana infection with that seen in L. major infected mice. Our data show that fewer monocytes are recruited to the lesions of L. mexicana infected mice as compared to mice infected with L. major. Moreover, monocytes that differentiate into mo-DCs in L. mexicana lesions produced less iNOS and migrated less efficiently to the draining lymph node as compared to those from L. major infected mice. Treatment of L. mexicana infected mice with α-IL-10R antibody resulted in increased recruitment of monocytes to the lesion along with greater production of IFN-γ and iNOS. Additionally, injection of DCs into the ear at the time of infection with L. mexicana also led to a more robust Th1 response. Taken together, these data suggest that during L. mexicana infection reduced recruitment, activation and subsequent migration of monocytes and mo-DCs to the draining lymph nodes may result in the insufficient priming of a Th1 response.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Leishmania mexicana/imunologia , Leishmaniose Cutânea/imunologia , Monócitos/imunologia , Monócitos/parasitologia , Animais , Orelha/parasitologia , Feminino , Leishmania major/imunologia , Leishmania major/patogenicidade , Leishmania mexicana/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Células Th1/imunologia
7.
Immunity ; 37(3): 511-23, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22981537

RESUMO

Interferon-γ (IFN-γ) promotes a population of T-bet(+) CXCR3(+) regulatory T (Treg) cells that limit T helper 1 (Th1) cell-mediated pathology. Our studies demonstrate that interleukin-27 (IL-27) also promoted expression of T-bet and CXCR3 in Treg cells. During infection with Toxoplasma gondii, a similar population emerged that limited T cell responses and was dependent on IFN-γ in the periphery but on IL-27 at mucosal sites. Transfer of Treg cells ameliorated the infection-induced pathology observed in Il27(-/-) mice, and this was dependent on their ability to produce IL-10. Microarray analysis revealed that Treg cells exposed to either IFN-γ or IL-27 have distinct transcriptional profiles. Thus, IFN-γ and IL-27 have different roles in Treg cell biology and IL-27 is a key cytokine that promotes the development of Treg cells specialized to control Th1 cell-mediated immunity at local sites of inflammation.


Assuntos
Interferon gama/farmacologia , Interleucina-17/farmacologia , Salmonelose Animal/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Toxoplasmose Animal/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Cultivadas , Feminino , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Interferon gama/genética , Interferon gama/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Receptores CXCR3/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT1/metabolismo , Salmonelose Animal/microbiologia , Salmonelose Animal/patologia , Salmonella typhimurium/imunologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Toxoplasma/imunologia , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/patologia
8.
PLoS Negl Trop Dis ; 6(2): e1492, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22348160

RESUMO

(•)NO is considered to be a key macrophage-derived cytotoxic effector during Trypanosoma cruzi infection. On the other hand, the microbicidal properties of reactive oxygen species (ROS) are well recognized, but little importance has been attributed to them during in vivo infection with T. cruzi. In order to investigate the role of ROS in T. cruzi infection, mice deficient in NADPH phagocyte oxidase (gp91(phox) (-/-) or phox KO) were infected with Y strain of T. cruzi and the course of infection was followed. phox KO mice had similar parasitemia, similar tissue parasitism and similar levels of IFN-γ and TNF in serum and spleen cell culture supernatants, when compared to wild-type controls. However, all phox KO mice succumbed to infection between day 15 and 21 after inoculation with the parasite, while 60% of wild-type mice were alive 50 days after infection. Further investigation demonstrated increased serum levels of nitrite and nitrate (NOx) at day 15 of infection in phox KO animals, associated with a drop in blood pressure. Treatment with a NOS2 inhibitor corrected the blood pressure, implicating NOS2 in this phenomenon. We postulate that superoxide reacts with (•)NO in vivo, preventing blood pressure drops in wild type mice. Hence, whilst superoxide from phagocytes did not play a critical role in parasite control in the phox KO animals, its production would have an important protective effect against blood pressure decline during infection with T. cruzi.


Assuntos
Doença de Chagas/imunologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/imunologia , NADPH Oxidases/deficiência , NADPH Oxidases/imunologia , Fagócitos/enzimologia , Fagócitos/imunologia , Choque , Trypanosoma cruzi/imunologia , Animais , Células Cultivadas , Doença de Chagas/mortalidade , Modelos Animais de Doenças , Feminino , Interferon gama/sangue , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2 , Parasitemia/imunologia , Baço/imunologia , Análise de Sobrevida , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA