Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lancet Microbe ; 4(6): e470-e480, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121240

RESUMO

Candida parapsilosis is one of the most commen causes of life-threatening candidaemia, particularly in premature neonates, individuals with cancer of the haematopoietic system, and recipients of organ transplants. Historically, drug-susceptible strains have been linked to clonal outbreaks. However, worldwide studies started since 2018 have reported severe outbreaks among adults caused by fluconazole-resistant strains. Outbreaks caused by fluconazole-resistant strains are associated with high mortality rates and can persist despite strict infection control strategies. The emergence of resistance threatens the efficacy of azoles, which is the most widely used class of antifungals and the only available oral treatment option for candidaemia. The fact that most patients infected with fluconazole-resistant strains are azole-naive underscores the high potential adaptability of fluconazole-resistant strains to diverse hosts, environmental niches, and reservoirs. Another concern is the multidrug-resistant and echinocandin-tolerant C parapsilosis isolates, which emerged in 2020. Raising awareness, establishing effective clinical interventions, and understanding the biology and pathogenesis of fluconazole-resistant C parapsilosis are urgently needed to improve treatment strategies and outcomes.


Assuntos
Candidemia , Fluconazol , Adulto , Recém-Nascido , Humanos , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Candida parapsilosis , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candidemia/tratamento farmacológico , Candidemia/epidemiologia , Azóis/farmacologia , Azóis/uso terapêutico
2.
Int J Antimicrob Agents ; 62(1): 106831, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37121442

RESUMO

Candida parapsilosis is a significant cause of candidemia worldwide. Echinocandin-resistant (ECR) and echinocandin-tolerant (ECT) C. parapsilosis isolates have been reported in various countries but are rare. Resistance and tolerance are predominantly caused by mutations related to the hotspot (HS) regions of the FKS1 gene. A relatively high proportion of clinical C. parapsilosis isolates carrying mutations outside the HS regions has been noted in some studies, but an association with echinocandin (EC) resistance or tolerance was not explored. Herein, CRISPR-Cas9 was used and the association between amino acid substitution in FKS1 outside HS 1/2 (V595I, S745L, M1328I, F1386S, and A1422G) with EC susceptibility profile was delineated. None of the mutations conferred EC resistance, but they resulted in a significantly higher level of EC tolerance than the parental isolate, ATCC 22019. When incubated on agar plates containing ECs, specifically caspofungin and micafungin, ECR colonies were exclusively observed among ECT isolates, particularly mutants carrying V595I, S745L, and F1386S. Additionally, mutants had significantly better growth rates in yeast extract peptone dextrose (YPD) and YPD containing agents inducing membrane and oxidative stresses. The mutants had a trivial fitness cost in the Galleria mellonella model relative to ATCC 22019. Collectively, this study supports epidemiological studies to catalog mutations occurring outside the HS regions of FKS1, even if they do not confer EC resistance. These mutations are important as they potentially confer a higher level of EC tolerance and a higher propensity to develop EC resistance, therefore unveiling a novel mechanism of EC tolerance in C. parapsilosis. The identification of EC tolerance in C. parapsilosis may have direct clinical benefit in patient management.


Assuntos
Antifúngicos , Candida parapsilosis , Humanos , Antifúngicos/farmacologia , Candida parapsilosis/genética , Candida/genética , Candida/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana , Equinocandinas/farmacologia , Mutação
3.
J Antimicrob Chemother ; 78(6): 1488-1494, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37100456

RESUMO

OBJECTIVES: Although perceived as a rare clinical entity, recent studies have noted the emergence of MDR C. parapsilosis (MDR-Cp) isolates from single patients (resistant to both azole and echinocandins). We previously reported a case series of MDR-Cp isolates carrying a novel FKS1R658G mutation. Herein, we identified an echinocandin-naive patient infected with MDR-Cp a few months after the previously described isolates. WGS and CRISPR-Cas9 editing were used to explore the origin of the new MDR-Cp isolates, and to determine if the novel mutation confers echinocandin resistance. METHODS: WGS was applied to assess the clonality of these isolates and CRISPR-Cas9 editing and a Galleria mellonella model were used to examine whether FKS1R658G confers echinocandin resistance. RESULTS: Fluconazole treatment failed, and the patient was successfully treated with liposomal amphotericin B (LAMB). WGS proved that all historical and novel MDR-Cp strains were clonal and distant from the fluconazole-resistant outbreak cluster in the same hospital. CRISPR-Cas9 editing and G. mellonella virulence assays confirmed that FKS1R658G confers echinocandin resistance in vitro and in vivo. Interestingly, the FKS1R658G mutant showed a very modest fitness cost compared with the parental WT strain, consistent with the persistence of the MDR-Cp cluster in our hospital. CONCLUSIONS: Our study showcases the emergence of MDR-Cp isolates as a novel threat in clinical settings, which undermines the efficacy of the two most widely used antifungal drugs against candidiasis, leaving only LAMB as a last resort. Additionally, surveillance studies and WGS are warranted to effectively establish infection control and antifungal stewardship strategies.


Assuntos
Antifúngicos , Candidemia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida parapsilosis/genética , Fluconazol/farmacologia , Farmacorresistência Fúngica , Equinocandinas/farmacologia , Equinocandinas/uso terapêutico , Candidemia/tratamento farmacológico , Candidemia/epidemiologia , Testes de Sensibilidade Microbiana
4.
mSphere ; 7(6): e0039322, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36416551

RESUMO

Genetic manipulation is often used to study gene function. However, unplanned genome changes (including single nucleotide polymorphisms [SNPs], aneuploidy, and loss of heterozygosity [LOH]) can affect the phenotypic traits of the engineered strains. Here, we compared the effect of classical deletion methods (replacing target alleles with selectable markers by homologous recombination) with CRISPR-Cas9 editing in the diploid human-pathogenic yeast Candida parapsilosis. We sequenced the genomes of 9 isolates that were modified using classic recombination methods and 12 that were edited using CRISPR-Cas9. As a control, the genomes of eight isolates that were transformed with a Cas9-expressing plasmid in the absence of a guide RNA were also sequenced. Following gene manipulation using classic homologous recombination, only one strain exhibited extensive LOH near the targeted gene (8.9 kb), whereas another contained multiple LOH events not associated with the intended modification. In contrast, large regions of LOH (up to >1,100 kb) were observed in most CRISPR-Cas9-edited strains. LOH most commonly occurred adjacent to the Cas9 cut site and extended to the telomere in four isolates. In two isolates, we observed LOH on chromosomes that were not targeted by CRISPR-Cas9. Among the CRISPR-edited isolates, two exhibited cysteine and methionine auxotrophy caused by LOH at a heterozygous site in MET10, approximately 11 and 157 kb downstream from the Cas9 target site, respectively. C. parapsilosis isolates have relatively low levels of heterozygosity. However, our results show that mutation complementation to confirm observed phenotypes is required when using CRISPR-Cas9. IMPORTANCE CRISPR-Cas9 has greatly streamlined gene editing and is now the gold standard and first choice for genetic engineering. However, we show that in diploid species, extra care should be taken in confirming the cause of any phenotypic changes observed. We show that the Cas9-induced double-strand break is often associated with loss of heterozygosity in the asexual diploid human fungal pathogen Candida parapsilosis. This can result in deleterious heterozygous variants (e.g., stop gain in one allele) becoming homozygous, resulting in unplanned phenotypic changes. Our results stress the importance of mutation complementation even when using CRISPR-Cas9.


Assuntos
Sistemas CRISPR-Cas , Candida parapsilosis , Humanos , Candida parapsilosis/genética , Edição de Genes/métodos , Perda de Heterozigosidade
5.
PLoS Genet ; 18(11): e1010525, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36441813

RESUMO

Saccharomyces genomes are highly collinear and show relatively little structural variation, both within and between species of this yeast genus. We investigated the only common inversion polymorphism known in S. cerevisiae, which affects a 24-kb 'flip/flop' region containing 15 genes near the centromere of chromosome XIV. The region exists in two orientations, called reference (REF) and inverted (INV). Meiotic recombination in this region is suppressed in crosses between REF and INV orientation strains such as the BY x RM cross. We find that the inversion polymorphism is at least 17 million years old because it is conserved across the genus Saccharomyces. However, the REF and INV isomers are not ancient alleles but are continually being re-created by re-inversion of the region within each species. Inversion occurs due to continual homogenization of two almost identical 4-kb sequences that form an inverted repeat (IR) at the ends of the flip/flop region. The IR consists of two pairs of genes that are specifically and strongly expressed during the late stages of sporulation. We show that one of these gene pairs, YNL018C/YNL034W, codes for a protein that is essential for spore formation. YNL018C and YNL034W are the founder members of a gene family, Centroid, whose members in other Saccharomycetaceae species evolve fast, duplicate frequently, and are preferentially located close to centromeres. We tested the hypothesis that Centroid genes are a meiotic drive system, but found no support for this idea.


Assuntos
Saccharomyces , Saccharomyces/genética , Saccharomyces cerevisiae/genética
6.
Emerg Microbes Infect ; 11(1): 2264-2274, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36066554

RESUMO

Patients presenting with severe COVID-19 are predisposed to acquire secondary fungal infections such as COVID-19-associated candidemia (CAC), which are associated with poor clinical outcomes despite antifungal treatment. The extreme burden imposed on clinical facilities during the COVID-19 pandemic has provided a permissive environment for the emergence of clonal outbreaks of multiple Candida species, including C. auris and C. parapsilosis. Here we report the largest clonal CAC outbreak to date caused by fluconazole resistant (FLZR) and echinocandin tolerant (ECT) C. parapsilosis. Sixty C. parapsilosis strains were obtained from 57 patients at a tertiary care hospital in Brazil, 90% of them were FLZR and ECT. Although only 35.8% of FLZR isolates contained an ERG11 mutation, all of them contained the TAC1L518F mutation and significantly overexpressed CDR1. Introduction of TAC1L518F into a susceptible background increased the MIC of fluconazole and voriconazole 8-fold and resulted in significant basal overexpression of CDR1. Additionally, FLZR isolates exclusively harboured E1939G outside of Fks1 hotspot-2, which did not confer echinocandin resistance, but significantly increased ECT. Multilocus microsatellite typing showed that 51/60 (85%) of the FLZR isolates belonged to the same cluster, while the susceptible isolates each represented a distinct lineage. Finally, biofilm production in FLZR isolates was significantly lower than in susceptible counterparts Suggesting that it may not be an outbreak determinant. In summary, we show that TAC1L518F and FKS1E1393G confer FLZR and ECT, respectively, in CAC-associated C. parapsilosis. Our study underscores the importance of antifungal stewardship and effective infection control strategies to mitigate clonal C. parapsilosis outbreaks.


Assuntos
COVID-19 , Candidemia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Brasil/epidemiologia , COVID-19/epidemiologia , Candida parapsilosis/genética , Candidemia/tratamento farmacológico , Candidemia/epidemiologia , Candidemia/microbiologia , Surtos de Doenças , Equinocandinas/farmacologia , Equinocandinas/uso terapêutico , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Humanos , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana , Pandemias , Voriconazol/uso terapêutico
7.
Methods Mol Biol ; 2542: 13-40, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36008654

RESUMO

CRISPR-Cas9 technology radically changed the approach to genetic manipulation of both medically and industrially relevant Candida species, as attested by the ever-increasing number of applications to the study of pathogenesis, drug resistance, gene expression, and host pathogen interaction and drug discovery. Here, we describe the use of plasmid-based systems for high efficiency CRISPR-Cas9 gene editing into any strain of four non-albicans Candida species, namely, Candida parapsilosis, Candida orthopsilosis, Candida metapsilosis, and Candida tropicalis. The plasmids pCP-tRNA and pCT-tRNA contain all the elements necessary for expressing the CRISPR-Cas9 machinery, and they can be used in combination with a repair template for disrupting gene function by insertion of a premature stop codon or by gene deletion. The plasmids are easily lost in the absence of selection, allowing scarless gene editing and minimizing detrimental effects of prolonged Cas9 expression.


Assuntos
Sistemas CRISPR-Cas , Candida , Sistemas CRISPR-Cas/genética , Candida/genética , Deleção de Genes , Edição de Genes , Plasmídeos/genética
9.
Elife ; 92020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32338594

RESUMO

The mating-type switching endonuclease HO plays a central role in the natural life cycle of Saccharomyces cerevisiae, but its evolutionary origin is unknown. HO is a recent addition to yeast genomes, present in only a few genera close to Saccharomyces. Here we show that HO is structurally and phylogenetically related to a family of unorthodox homing genetic elements found in Torulaspora and Lachancea yeasts. These WHO elements home into the aldolase gene FBA1, replacing its 3' end each time they integrate. They resemble inteins but they operate by a different mechanism that does not require protein splicing. We show that a WHO protein cleaves Torulaspora delbrueckii FBA1 efficiently and in an allele-specific manner, leading to DNA repair by gene conversion or NHEJ. The DNA rearrangement steps during WHO element homing are very similar to those during mating-type switching, and indicate that HO is a domesticated WHO-like element.


In the same way as a sperm from a male and an egg from a female join together to form an embryo in most animals, yeast cells have two sexes that coordinate how they reproduce. These are called "mating types" and, rather than male or female, an individual yeast cell can either be mating type "a" or "alpha". Every yeast cell contains the genes for both mating types, and each cell's mating type is determined by which of those genes it has active. Only one mating type gene can be 'on' at a time, but some yeast species can swap mating type on demand by switching the corresponding genes 'on' or 'off'. This switch is unusual. Rather than simply activate one of the genes it already has, the yeast cell keeps an inactive version of each mating type gene tucked away, makes a copy of the gene it wants to be active and pastes that copy into a different location in its genome. To do all of this yeast need another gene called HO. This gene codes for an enzyme that cuts the DNA at the location of the active mating type gene. This makes an opening that allows the cell to replace the 'a' gene with the 'alpha' gene, or vice versa. This system allows yeast cells to continue mating even if all the cells in a colony start off as the same mating type. But, cutting into the DNA is risky, and can damage the health of the cell. So, why did yeast cells evolve a system that could cause them harm? To find out where the HO gene came from, Coughlan et al. searched through all the available genomes from yeast species for other genes with similar sequences and identified a cluster which they nicknamed "weird HO" genes, or WHO genes for short. Testing these genes revealed that they also code for enzymes that make cuts in the yeast genome, but the way the cell repairs the cuts is different. The WHO genes are jumping genes. When the enzyme encoded by a WHO gene makes a cut in the genome, the yeast cell copies the gene into the gap, allowing the gene to 'jump' from one part of the genome to another. It is possible that this was the starting point for the evolution of the HO gene. Changes to a WHO gene could have allowed it to cut into the mating type region of the yeast genome, giving the yeast an opportunity to 'domesticate' it. Over time, the yeast cell stopped the WHO gene from jumping into the gap and started using the cut to change its mating type. Understanding how cells adapt genes for different purposes is a key question in evolutionary biology. There are many other examples of domesticated jumping genes in other organisms, including in the human immune system. Understanding the evolution of HO not only sheds light on how yeast mating type switching evolved, but on how other species might harness and adapt their genes.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/genética , Genes Fúngicos Tipo Acasalamento , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Evolução Molecular , Rearranjo Gênico , Proteínas Nucleares/genética , Filogenia , Saccharomyces cerevisiae/enzimologia
10.
PLoS Pathog ; 16(1): e1008201, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945142

RESUMO

Fungal pathogens represent a major human threat affecting more than a billion people worldwide. Invasive infections are on the rise, which is of considerable concern because they are accompanied by an escalation of antifungal resistance. Deciphering the mechanisms underlying virulence traits and drug resistance strongly relies on genetic manipulation techniques such as generating mutant strains carrying specific mutations, or gene deletions. However, these processes have often been time-consuming and cumbersome in fungi due to a number of complications, depending on the species (e.g., diploid genomes, lack of a sexual cycle, low efficiency of transformation and/or homologous recombination, lack of cloning vectors, nonconventional codon usage, and paucity of dominant selectable markers). These issues are increasingly being addressed by applying clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 mediated genetic manipulation to medically relevant fungi. Here, we summarize the state of the art of CRISPR-Cas9 applications in four major human fungal pathogen lineages: Candida spp., Cryptococcus neoformans, Aspergillus fumigatus, and Mucorales. We highlight the different ways in which CRISPR has been customized to address the critical issues in different species, including different strategies to deliver the CRISPR-Cas9 elements, their transient or permanent expression, use of codon-optimized CAS9, and methods of marker recycling and scarless editing. Some approaches facilitate a more efficient use of homology-directed repair in fungi in which nonhomologous end joining is more commonly used to repair double-strand breaks (DSBs). Moreover, we highlight the most promising future perspectives, including gene drives, programmable base editors, and nonediting applications, some of which are currently available only in model fungi but may be adapted for future applications in pathogenic species. Finally, this review discusses how the further evolution of CRISPR technology will allow mycologists to tackle the multifaceted issue of fungal pathogenesis.


Assuntos
Sistemas CRISPR-Cas , Micologia/métodos , Aspergillus fumigatus/genética , Cryptococcus neoformans/genética , Previsões , Edição de Genes , Humanos , Mucorales/genética
11.
G3 (Bethesda) ; 9(9): 3035-3043, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31352406

RESUMO

Candida orthopsilosis is diploid asexual yeast that causes human disease. Most C. orthopsilosis isolates arose from at least four separate hybridizations between related, but not identical, parents. Here, we used population genomics data to correlate genotypic and phenotypic variation in 28 C. orthopsilosis isolates. We used cosine similarity scores to identify 65 variants with potential high-impact (deleterious effects) that correlated with specific phenotypes. Of these, 19 were Single Nucleotide Polymorphisms (SNPs) that changed stop or start codons, or splice sites. One variant resulted in a premature stop codon in both alleles of the gene ZCF29 in C. orthopsilosis isolate 185, which correlated with sensitivity to nystatin and caffeine. We used CRISPR-Cas9 editing to introduce this polymorphism into two resistant C. orthopsilosis isolates. Introducing the stop codon resulted in sensitivity to caffeine and to ketoconazole, but not to nystatin. Our analysis shows that it is possible to associate genomic variants with phenotype in asexual Candida species, but that only a small amount of genomic variation can be easily explored.


Assuntos
Cafeína/farmacologia , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/fisiologia , Proteínas Fúngicas/genética , Animais , Antifúngicos/farmacologia , Sistemas CRISPR-Cas , Candida parapsilosis/genética , Candida parapsilosis/patogenicidade , Códon de Terminação , Genótipo , Cetoconazol/farmacologia , Lepidópteros/microbiologia , Testes de Sensibilidade Microbiana , Microrganismos Geneticamente Modificados , Nistatina/farmacologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Virulência/genética
12.
J Antimicrob Chemother ; 74(8): 2230-2238, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31106355

RESUMO

BACKGROUND: Azoles are one of the main antifungal classes for the treatment of candidiasis. In the current context of emerging drug resistance, most studies have focused on Candida albicans, Candida glabrata or Candida auris but, so far, less is known about the underlying mechanisms of resistance in other species, including Candida orthopsilosis. OBJECTIVES: We investigated azole resistance in a C. orthopsilosis clinical isolate recovered from a patient with haematological malignancy receiving fluconazole prophylaxis. METHODS: Antifungal susceptibility to fluconazole was determined in vitro (CLSI M27-A3) and in vivo (in a Galleria mellonella model of invasive candidiasis). The CoERG11 gene was then sequenced and amino acid substitutions identified were mapped on the predicted 3D structure of CoErg11p. A clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) genome-editing strategy was used to introduce relevant mutations into a fluconazole-susceptible C. orthopsilosis isolate. RESULTS: Compared with unrelated C. orthopsilosis isolates, the clinical isolate exhibited both in vitro and in vivo fluconazole resistance. Sequencing of the CoERG11 gene identified several amino acid substitutions, including two possibly involved in fluconazole resistance (L376I and G458S). Both mutations mapped close to the active site of CoErg11p. Engineering these mutations in a different genetic background using CRISPR-Cas9 demonstrated that G458S, but not L376I, confers resistance to fluconazole and voriconazole. CONCLUSIONS: Our data show that the G458S amino acid substitution in CoERG11p, but not L376I, contributes to azole resistance in C. orthopsilosis. In addition to highlighting the potential of CRISPR-Cas9 technology for precise genome editing in the field of antifungal resistance, we discuss some points that are critical to improving its efficiency.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/genética , Sistema Enzimático do Citocromo P-450/genética , Edição de Genes/métodos , Substituição de Aminoácidos , Sistemas CRISPR-Cas , Candidíase/microbiologia , Farmacorresistência Fúngica/genética , Humanos , Testes de Sensibilidade Microbiana
13.
PLoS One ; 14(4): e0215912, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31017950

RESUMO

Agglutinin like sequence (Als) cell-wall proteins play a key role in adhesion and virulence of Candida species. Compared to the well-characterized Candida albicans ALS genes, little is known about ALS genes in the Candida parapsilosis species complex. Three incomplete ALS genes were identified in the genome sequence for Candida orthopsilosis strain 90-125 (GenBank assembly ASM31587v1): CORT0C04210 (named CoALS4210), CORT0C04220 (CoALS4220) and CORT0B00800 (CoALS800). To complete the gene sequences, new data were derived from strain 90-125 using Illumina (short-read) and Oxford Nanopore (long-read) methods. Long-read sequencing analysis confirmed the presence of 3 ALS genes in C. orthopsilosis 90-125 and resolved the gaps located in repetitive regions of CoALS800 and CoALS4220. In the new genome assembly (GenBank PQBP00000000), the CoALS4210 sequence was slightly longer than in the original assembly. C. orthopsilosis Als proteins encoded features well-known in C. albicans Als proteins such as a secretory signal peptide, N-terminal domain with a peptide-binding cavity, amyloid-forming region, repeated sequences, and a C-terminal site for glycosylphosphatidylinositol anchor addition that, in yeast, suggest localization of the proteins in the cell wall. CoAls4210 and CoAls800 lacked the classic C. albicans Als tandem repeats, instead featuring short, imperfect repeats with consensus motifs such as SSSEPP and GSGN. Quantitative RT-PCR showed differential regulation of CoALS genes by growth stage in six genetically diverse C. orthopsilosis clinical isolates, which also exhibited length variation in the ALS alleles, and strain-specific gene expression patterns. Overall, long-read DNA sequencing methodology was instrumental in generating an accurate assembly of CoALS genes, thus revealing their unconventional features and first insights into their allelic variability within C. orthopsilosis clinical isolates.


Assuntos
Aglutininas/genética , Candida parapsilosis/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Alelos , Sequência de Bases , Candida parapsilosis/crescimento & desenvolvimento , Cromossomos Fúngicos/genética , Sequência Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Domínios Proteicos
14.
mSphere ; 4(2)2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867327

RESUMO

Many Candida species that cause infection have diploid genomes and do not undergo classical meiosis. The application of clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) gene editing systems has therefore greatly facilitated the generation of gene disruptions and the introduction of specific polymorphisms. However, CRISPR methods are not yet available for all Candida species. We describe here an adaption of a previously developed CRISPR system in Candida parapsilosis that uses an autonomously replicating plasmid. Guide RNAs can be introduced in a single cloning step and are released by cleavage between a tRNA and a ribozyme. The plasmid also contains CAS9 and a selectable nourseothricin SAT1 marker. It can be used for markerless editing in C. parapsilosis, C. orthopsilosis, and C. metapsilosis We also show that CRISPR can easily be used to introduce molecular barcodes and to reintroduce wild-type sequences into edited strains. Heterozygous mutations can be generated, either by careful selection of the distance between the polymorphism and the Cas9 cut site or by providing two different repair templates at the same time. In addition, we have constructed a different autonomously replicating plasmid for CRISPR-Cas9 editing in Candida tropicalis We show that editing can easily be carried out in multiple C. tropicalis isolates. Nonhomologous end joining (NHEJ) repair occurs at a high level in C. metapsilosis and C. tropicalisIMPORTANCECandida species are a major cause of infection worldwide. The species associated with infection vary with geographical location and with patient population. Infection with Candida tropicalis is particularly common in South America and Asia, and Candida parapsilosis infections are more common in the very young. Molecular methods for manipulating the genomes of these species are still lacking. We describe a simple and efficient CRISPR-based gene editing system that can be applied in the C. parapsilosis species group, including the sister species Candida orthopsilosis and Candida metapsilosis We have also constructed a separate system for gene editing in C. tropicalis.


Assuntos
Sistemas CRISPR-Cas , Candida/genética , Plasmídeos/genética , Candida tropicalis/genética , Código de Barras de DNA Taxonômico , Reparo do DNA por Junção de Extremidades , Edição de Genes/métodos , Vetores Genéticos , Genoma Fúngico , Mutação , Estreptotricinas/farmacologia
15.
Fungal Genet Biol ; 120: 19-29, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30205198

RESUMO

Candida orthopsilosis is a human fungal pathogen belonging to the Candida parapsilosis sensu lato species complex. C. orthopsilosis annotated genome harbors 3 putative agglutinin-like sequence (ALS) genes named CORT0B00800, CORT0C04210 and CORT0C04220. The aim of this study was to investigate the role played by CORT0C04210 (CoALS4210) in the virulence and pathogenicity of this opportunistic yeast. Heterozygous and null mutant strains lacking one or both copies of CoALS4210 were obtained using the SAT1-flipper cassette strategy and were characterized in in vitro, ex vivo and in vivo models. While no differences between the mutant and the wild-type strains were observed in in vitro growth or in the ability to undergo morphogenesis, the CoALS4210 null mutant showed an impaired adhesion to human buccal epithelial cells compared to heterozygous and wild type strains. When the pathogenicity of CoALS4210 mutant and wild type strains was evaluated in a murine model of systemic candidiasis, no statistically significant differences were observed in fungal burden of target organs. Since gene disruption could alter chromatin structure and influence transcriptional regulation of other genes, two independent CRISPR/Cas9 edited mutant strains were generated in the same genetic background used to create the deleted strains. CoALS4210-edited strains were tested for their in vitro growing ability, and compared with the deleted strain for adhesion ability to human buccal epithelial cells. The results obtained confirmed a reduction in the adhesion ability of C. orthopsilosis edited strains to buccal cells. These findings provide the first evidence that CRISPR/Cas9 can be successfully used in C. orthopsilosis and demonstrate that CoALS4210 plays a direct role in the adhesion of C. orthopsilosis to human buccal cells but is not primarily involved in the onset of disseminated candidiasis.


Assuntos
Candida parapsilosis/genética , Genes Fúngicos , Mucosa Bucal/microbiologia , Animais , Sistemas CRISPR-Cas , Candida parapsilosis/crescimento & desenvolvimento , Candida parapsilosis/patogenicidade , Candidíase/microbiologia , Adesão Celular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese , Virulência/genética
16.
Int J Antimicrob Agents ; 52(6): 842-853, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30236955

RESUMO

Most antibiotics have limited or no activity against bacterial biofilms, whereas bacteriophages can eradicate biofilms. We evaluated whether Staphylococcus aureus-specific bacteriophage Sb-1 could eradicate biofilm, both alone and in combination with different classes of antibiotics, degrade the extracellular matrix and target persister cells. Biofilm of methicillin-resistant S. aureus (MRSA) ATCC 43300 was treated with Sb-1 alone or in (simultaneous or staggered) combination with fosfomycin, rifampin, vancomycin, daptomycin or ciprofloxacin. The matrix was visualized by confocal fluorescent microscopy. Persister cells were treated with 104 and 107 plaque-forming units (PFU)/mL Sb-1 for 3 h in phosphate-buffered saline (PBS), followed by colony-forming units (CFU) counting. Alternatively, bacteria were washed and incubated in fresh brain heart infusion (BHI) medium and bacterial growth assessed after a further 24 h. Pretreatment with Sb-1 followed by the administration of subinhibitory concentrations of antibiotic caused a synergistic effect in eradicating MRSA biofilm. Sb-1 determined a dose-dependent reduction of matrix exopolysaccharide. Sb-1 at 107 PFU/mL showed direct killing activity on ≈ 5 × 105 CFU/mL persisters. However, even a lower titer had lytic activity when phage-treated persister cells were inoculated in fresh medium, reverting to a normal-growing phenotype. This study provides valuable data on the enhancing effect of Sb-1 on antibiotic efficacy, exhibiting specific antibiofilm features. Sb-1 can degrade the MRSA polysaccharide matrix and target persister cells and is therefore suitable for treatment of biofilm-associated infections.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Matriz Extracelular/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/virologia , Fagos de Staphylococcus/crescimento & desenvolvimento , Bacteriólise , Contagem de Colônia Microbiana , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Confocal , Microscopia de Fluorescência , Polissacarídeos Bacterianos/metabolismo
17.
PLoS Genet ; 14(5): e1007429, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29852014

RESUMO

Riboswitches are non-coding RNA molecules that regulate gene expression by binding to specific ligands. They are primarily found in bacteria. However, one riboswitch type, the thiamin pyrophosphate (TPP) riboswitch, has also been described in some plants, marine protists and fungi. We find that riboswitches are widespread in the budding yeasts (Saccharomycotina), and they are most common in homologs of DUR31, originally described as a spermidine transporter. We show that DUR31 (an ortholog of N. crassa gene NCU01977) encodes a thiamin transporter in Candida species. Using an RFP/riboswitch expression system, we show that the functional elements of the riboswitch are contained within the native intron of DUR31 from Candida parapsilosis, and that the riboswitch regulates splicing in a thiamin-dependent manner when RFP is constitutively expressed. The DUR31 gene has been lost from Saccharomyces, and may have been displaced by an alternative thiamin transporter. TPP riboswitches are also present in other putative transporters in yeasts and filamentous fungi. However, they are rare in thiamin biosynthesis genes THI4 and THI5 in the Saccharomycotina, and have been lost from all genes in the sequenced species in the family Saccharomycetaceae, including S. cerevisiae.


Assuntos
Candida parapsilosis/genética , Proteínas Fúngicas/genética , Proteínas de Membrana Transportadoras/genética , Riboswitch/genética , Tiamina/metabolismo , Transporte Biológico Ativo/genética , Candida parapsilosis/metabolismo , Íntrons/genética , Neurospora crassa/genética , Saccharomyces/genética
18.
Nanoscale ; 9(41): 15911-15922, 2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29019498

RESUMO

Candida albicans is the lead fungal pathogen of nosocomial bloodstream infections worldwide and has mortality rates of 43%. Nanoparticles have been identified as a means to improve medical outcomes for Candida infections, enabling sample concentration, serving as contrast agents for in vivo imaging, and delivering therapeutics. However, little is known about how nanoparticles interact with the fungal cell wall. In this report we used laser scanning confocal microscopy to examine the interaction of fluorescent polystyrene nanoparticles of specific surface chemistry and diameter with C. albicans and mutant strains deficient in various C. albicans surface proteins. Carboxylate-functionalized nanoparticles adsorbed mainly to the hyphae of wild-type C. albicans. The dissociative binding constant of the nanoparticles was ∼150, ∼30 and ∼2.5 pM for 40, 100 nm and 200 nm diameter particles, respectively. A significant reduction in particle binding was observed with a Δals3 strain compared to wild-type strains, identifying the Als3 adhesin as the main mediator of this nanoparticle adhesion. In the absence of Als3, nanoparticles bound to germ tubes and yeast cells in a pattern resembling the localization of Als1, indicating Als1 also plays a role. Nanoparticle surface charge was shown to influence binding - positively charged amine-functionalized nanoparticles failed to bind to the hyphal cell wall. Binding of carboxylate-functionalized nanoparticles was observed in the presence of serum, though interactions were reduced. These observations show that Als3 and Als1 are important targets for nanoparticle-mediated diagnostics and therapeutics, and provide direction for optimal diameter and surface characteristics of nanoparticles that bind to the fungal cell wall.


Assuntos
Candida albicans/efeitos dos fármacos , Ácidos Carboxílicos/farmacologia , Parede Celular/efeitos dos fármacos , Nanopartículas , Hifas
19.
Sci Rep ; 7(1): 8051, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28808289

RESUMO

Candida parapsilosis is one of the most common causes of candidiasis, particularly in the very young and the very old. Studies of gene function are limited by the lack of a sexual cycle, the diploid genome, and a paucity of molecular tools. We describe here the development of a plasmid-based CRISPR-Cas9 system for gene editing in C. parapsilosis. A major advantage of the system is that it can be used in any genetic background, which we showed by editing genes in 20 different isolates. Gene editing is carried out in a single transformation step. The CAS9 gene is expressed only when the plasmid is present, and it can be removed easily from transformed strains. There is theoretically no limit to the number of genes that can be edited in any strain. Gene editing is increased by homology-directed repair in the presence of a repair template. Editing by non-homologous end joining (NHEJ) also occurs in some genetic backgrounds. Finally, we used the system to introduce unique tags at edited sites.


Assuntos
Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Candida parapsilosis/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Reparo do DNA por Junção de Extremidades/genética , Edição de Genes/métodos , Plasmídeos/genética
20.
Curr Top Med Chem ; 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056743

RESUMO

Antimicrobial peptides (AMPs) are an abundant and varied group of molecules recognized as the most ancient components of the innate immune system. They are found in a wide group of organisms including bacteria, plants and animals as a defense mechanism against different kinds of infectious pathogens. Over the past two decades, a fast-growing number of AMPs have been identified/designed and their wide-spectrum antimicrobial activity has been deeply investigated. In recent years, there has been an increasing interest in the use of AMPs as alternative anti-biofilm molecules for the control of biofilm-related infections. Biofilms are sessile communities of microbial cells embedded in a self-produced matrix and characterized by a low metabolic activity. Due to their peculiar physiological properties, bacteria/fungi in biofilms result more resistant to conventional antibiotic therapies compared with their planktonic counterparts. AMPs may be a promising strategy to combat biofilm-related infections, as many of them target the microbial membrane, thus being potentially effective also on metabolically inactive cells. Investigations conducted so far evidenced that these peptides may be active in either eradicating established biofilms or preventing their formation, depending on the specific molecule. Here we present a detailed review of the literature describing the latest results of both in vitro and in vivo experiments aimed at evaluating AMP potential usage in biofilm control. In addition, we provide the reader with an overview on AMP local delivery systems, and we discuss their potential application in the coating of medical indwelling devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA