Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Front Microbiol ; 15: 1399968, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725687

RESUMO

Grape-associated microbial community is influenced by a combination of viticultural, climatic, pedological and anthropological factors, collectively known as terroir. Therefore, grapes of the same cultivar grown in different areas can be appreciated for their distinctive biogeographic characteristics. In our previous study, we showed that the phenotypic response of Aglianico and Cabernet grapevines from Molise and Sicily regions is significantly influenced by the prevailing pedoclimatic conditions, particularly soil physical properties. However, the scale at which microbial communities differ could be important in clarifying the concept of terroir, including whether it is linked to the grape variety present in a particular vineyard. To explore this further, in the research presented here, a comparative study on the fungal communities inhabiting the berry surfaces of Cabernet and Aglianico cultivars was conducted on different vineyards located in Southern Italy (Molise, Sicily and Campania regions, the first two of which had been involved in our previous study) by using high-throughput sequencing (HTS) and multivariate data analysis. The descriptive approach through relative abundance analysis showed the most abundant phyla (Ascomycota, Basidiomycota, and Chytridiomycota), families (Cladosporiaceae, Saccotheciaceae, Pleosporaceae, Saccharomycodaceae, Sporidiobolaceae, Didymellaceae, Filobasidiaceae, Bulleribasidiaceae, and Saccharomycetaceae) and genera (Cladosporium, Aureobasidium, Alternaria, Stemphylium and Filobasidium) detected on grape berries. The multivariate data analysis performed by using different packages (phyloseq, Vegan, mixOmics, microbiomeMarker and ggplot2) highlighted that the variable "vineyard location" significantly affect the fungal community, while the variable "grape variety" has no significant effect. Thus, some taxa are found to be part of specific vineyard ecosystems rather than specific grape varieties, giving additional information on the microbial contribution to wine quality, thanks to the presence of fermentative yeasts or, conversely, to the involvement in negative or detrimental roles, due to the presence of grape-deriving fungi implied in the spoilage of wine or in grapevine pathogenesis. In this connection, the main functions of core taxa fungi, whose role in the vineyard environment is still poorly understood, are also described.

2.
Int J Biol Macromol ; 254(Pt 1): 127754, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287572

RESUMO

Liquid-liquid phase separation (LLPS) is pivotal in forming biomolecular condensates, which are crucial in several biological processes. Intrinsically disordered regions (IDRs) are typically responsible for driving LLPS due to their multivalency and high content of charged residues that enable the establishment of electrostatic interactions. In our study, we examined the role of charge distribution in the condensation of the disordered N-terminal domain of human topoisomerase I (hNTD). hNTD is densely charged with oppositely charged residues evenly distributed along the sequence. Its LLPS behavior was compared with that of charge permutants exhibiting varying degrees of charge segregation. At low salt concentrations, hNTD undergoes LLPS. However, LLPS is inhibited by high concentrations of salt and RNA, disrupting electrostatic interactions. Our findings show that, in hNTD, moderate charge segregation promotes the formation of liquid condensates that are sensitive to salt and RNA, whereas marked charge segregation results in the formation of aberrant condensates. Although our study is based on a limited set of protein variants, it supports the applicability of the "stickers-and-spacers" model to biomolecular condensates involving highly charged IDRs. These results may help generate reliable models of the overall LLPS behavior of supercharged polypeptides.


Assuntos
DNA Topoisomerases Tipo I , RNA , Humanos , DNA Topoisomerases Tipo I/genética , Eletricidade Estática
3.
PLoS One ; 19(1): e0294825, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38236823

RESUMO

In this study, we propose a comprehensive mechanical model of ocular bulb vibrations and discuss its implications for acoustic tonometry. The model describes the eye wall as a spherical, pre-stressed elastic shell containing a viscoelastic material and accounts for the interaction between the elastic corneoscleral shell and the viscoelastic vitreous humor. We investigate the natural frequencies of the system and the corresponding vibration modes, expanding the solution in terms of scalar and vector spherical harmonics. From a quantitative point of view, our findings reveal that the eyebulb vibration frequencies significantly depend on IOP. This dependency has two origins: "geometric" stiffening, due to an increase of the pre-stress, and "material" stiffening, due to the nonlinearity of the stress-strain curve of the sclera. The model shows that the second effect is by far dominant. We also find that the oscillation frequencies depend on ocular rigidity, but this dependency is important only at relatively large values of IOP. Thus close to physiological conditions, IOP is the main determinant of ocular vibration frequencies. The vitreous rheological properties are found to mostly influence vibration damping. This study contributes to the understanding of the mechanical behavior of the eye under dynamic conditions and thus has implications for non-contact intraocular pressure measurement techniques, such as acoustic tonometry. The model can also be relevant for other ocular pathological conditions, such as traumatic retinal detachment, which are believed to be influenced by the dynamic behavior of the eye.


Assuntos
Pressão Intraocular , Vibração , Tonometria Ocular/métodos , Esclera/fisiologia , Acústica
4.
Cell Death Discov ; 9(1): 417, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973903

RESUMO

Mitochondria have been the focus of extensive research for decades since their dysfunction is linked to more than 150 distinct human disorders. Despite considerable efforts, researchers have only been able to skim the surface of the mitochondrial social complexity and the impact of inter-organelle and inter-organ communication alterations on human health. While some progress has been made in deciphering connections among mitochondria and other cytoplasmic organelles through direct (i.e., contact sites) or indirect (i.e., inter-organelle trafficking) crosstalk, most of these efforts have been restricted to a limited number of proteins involved in specific physiological pathways or disease states. This research bottleneck is further narrowed by our incomplete understanding of the cellular alteration timeline in a specific pathology, which prevents the distinction between a primary organelle dysfunction and the defects occurring due to the disruption of the organelle's interconnectivity. In this perspective, we will (i) summarize the current knowledge on the mitochondrial crosstalk within cell(s) or tissue(s) in health and disease, with a particular focus on neurodegenerative disorders, (ii) discuss how different large-scale and targeted approaches could be used to characterize the different levels of mitochondrial social complexity, and (iii) consider how investigating the different expression patterns of mitochondrial proteins in different cell types/tissues could represent an important step forward in depicting the distinctive architecture of inter-organelle communication.

5.
Cancers (Basel) ; 15(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37444489

RESUMO

External and internal mechanical forces modulate cell morphology, movement, proliferation and metabolism, and represent crucial inputs for tissue homeostasis. The transcriptional regulators YAP and TAZ are important effectors of mechanical signaling and are frequently activated in solid tumors, correlating with metastasis, chemoresistance, and shorter patient survival. YAP/TAZ activity is controlled by various pathways that sense cell shape, polarity, contacts, and mechanical tension. In tumors, aberrant YAP/TAZ activation may result from cancer-related alterations of such regulatory networks. The tumor suppressor DAB2IP is a Ras-GAP and scaffold protein that negatively modulates multiple oncogenic pathways and is frequently downregulated or inactivated in solid tumors. Here, we provide evidence that DAB2IP expression is sustained by cell confluency. We also find that DAB2IP depletion in confluent cells alters their morphology, reducing cell packing while increasing cell stiffness. Finally, we find that DAB2IP depletion in confluent cells favors YAP/TAZ nuclear localization and transcriptional activity, while its ectopic expression in subconfluent cells increases YAP/TAZ retention in the cytoplasm. Together, these data suggest that DAB2IP may function as a sensor of cell interactions, contributing to dampening cellular responses to oncogenic inputs in confluent cells and that DAB2IP loss-of-function would facilitate YAP/TAZ activation in intact epithelia, accelerating oncogenic transformation.

6.
Haematologica ; 108(2): 472-482, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35924581

RESUMO

In hemophilia A, F8 nonsense variants, and particularly those affecting the large factor VIII (FVIII) B domain that is dispensable for coagulant activity, display lower association with replacement therapy-related anti-FVIII inhibitory antibodies as retrieved from multiple international databases. Since null genetic conditions favor inhibitor development, we hypothesized that translational readthrough over premature termination codons (PTC) may contribute to immune tolerance by producing full-length proteins through the insertion of amino acid subset(s). To quantitatively evaluate the readthrough output in vitro, we developed a very sensitive luciferase-based system to detect very low full-length FVIII synthesis from a wide panel (n=45; ~60% patients with PTC) of F8 nonsense variants. PTC not associated with inhibitors displayed higher readthrough-driven expression levels than inhibitor-associated PTC, a novel observation. Particularly, higher levels were detected for B-domain variants (n=20) than for variants in other domains (n=25). Studies on plasma from six hemophilia A patients with PTC, integrated by expression of the corresponding nonsense and readthrough-deriving missense variants, consistently revealed higher FVIII levels for B-domain variants. Only one B-domain PTC (Arg814*) was found among the highly represented PTC not sporadically associated with inhibitors, but with the lowest proportion of inhibitor cases (4 out of 57). These original insights into the molecular genetics of hemophilia A, and particularly into genotype-phenotype relationships related with disease treatment, demonstrate that B-domain features favor PTC readthrough output. This provides a potential molecular mechanism contributing to differential PTC-associated inhibitor occurrence, with translational implications for a novel, experimentally based classification of F8 nonsense variants.


Assuntos
Fator VIII , Hemofilia A , Humanos , Biossíntese de Proteínas , Códon sem Sentido , Mutação de Sentido Incorreto , Fator IX/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-36088072

RESUMO

Fidelity of protein synthesis, a process shaped by several mechanisms involving specialized ribosome regions and external factors, ensures the precise reading of sense as well as stop codons (UGA, UAG, UAA), which are usually localized at the 3' of mRNA and drive the release of the polypeptide chain. However, either natural (NTCs) or premature (PTCs) termination codons, the latter arising from nucleotide changes, can undergo a recoding process named ribosome or translational readthrough, which insert specific amino acids (NTCs) or subset(s) depending on the stop codon type (PTCs). This process is particularly relevant for nonsense mutations, a relatively frequent cause of genetic disorders, which impair gene expression at different levels by potentially leading to mRNA degradation and/or synthesis of truncated proteins. As a matter of fact, many efforts have been made to develop efficient and safe readthrough-inducing compounds, which have been challenged in several models of human disease to provide with a therapy. In this view, the dissection of the molecular determinants shaping the outcome of readthrough, namely nucleotide and protein contexts as well as their interplay and impact on protein structure/function, is crucial to identify responsive nonsense mutations resulting in functional full-length proteins. The interpretation of experimental and mechanistic findings is also important to define a possibly clear picture of potential readthrough-favorable features useful to achieve rescue profiles compatible with therapeutic thresholds typical of each targeted disorder, which is of primary importance for the potential translatability of readthrough into a personalized and mutation-specific, and thus patient-oriented, therapeutic strategy.


Assuntos
Códon sem Sentido , Biossíntese de Proteínas , Códon sem Sentido/genética , Códon sem Sentido/metabolismo , Códon de Terminação/genética , Códon de Terminação/metabolismo , Humanos , Nucleotídeos/metabolismo , Proteínas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
8.
Foods ; 11(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36140862

RESUMO

The European Union (EU) adopts the One Health (OH) approach, based on the relationships between human, animal, and environmental health. OH concerns a multitude of aspects, some of which are discussed here. OH overlaps the European Green Deal plan and its relaunched Farm to Fork Strategy, which aims at spreading organic farms adopting the circular economy, in order to improve human health through both better environmental conditions and healthier food. Nevertheless, zoonoses cause sanitary cost in terms of infected farm personnel, lower productivity, and lower fertility of infected farm animals. In such scenarios, the decreased breeding yield and the lower income induce higher cost of farm products, meaning that the market price rises, becoming uncompetitive when compared to the prices of industrial products. Consequently, lower revenues can hinder the farm growth expected in the framework of the EU Green Deal. Since zoonosis control is a key element in aligning EU policies aimed at achieving the EU Green Deal goal of "ZERO environmental impact" by 2050, the authors suggest the inclusion of the parameter economic health in the OH approach, in order to individuate EU Member States (MSs) economically unable to conduct eradication programmes and to finance them. Economic health is here considered as a starting point of the new ethical and science-based One Health Financial Model that the authors suggest as an in-embryo model, in which specific rules should regulate public funds, private investments, and trading, which should exclusively concern public services and private enterprises complying with most of the OH parameters. In this way, economic losses due to collateral negative effects deriving from human activities can be progressively decreased, and the entire planet will benefit from the process. Despite the considerable efforts being carried out in the context of the OH approach, war causes tragic and devastating effects on the physical and mental health of human beings, on their lives, on pandemic and zoonotic threats, on animals, on plants and, last but not least, on the environment. War is incompatible with OH. Enormous efforts for peace are therefore urgently needed.

9.
Curr Issues Mol Biol ; 44(5): 2321-2334, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35678687

RESUMO

In recent years, alongside the conventional screening procedures for the evaluation of probiotics for human usage, the pharmaceutical and food industries have encouraged scientific research towards the selection of new probiotic bacterial strains with particular functional features. Therefore, this study intended to explore novel functional properties of five Lactiplantibacillus plantarum strains isolated from bee bread. Specifically, antioxidant, antimicrobial and ß-glucosidase activities, exopolysaccharides (EPS) production and the ability to synthesize γ-aminobutyric acid (GABA) were evaluated. The results demonstrated that the investigated L. plantarum strains were effective in inhibiting the growth of some human opportunistic pathogens in vitro (Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, Enterococcus faecalis and Staphylococcus aureus). Moreover, the evaluation of antioxidant and ß-glucosidase activity and of EPS and GABA production, revealed a different behavior among the strains, testifying how these properties are strongly strain-dependent. This suggests that a careful selection within a given species is important in order to identify appropriate strains for specific biotechnological applications. The results highlighted that the five strains of L. plantarum are promising candidates for application as dietary supplements in the human diet and as microbial cultures in specific food productions.

10.
Front Microbiol ; 13: 900876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558107

RESUMO

The present study evaluated the fungal contamination of ready-to-eat dried hazelnuts considering for the first time the application of the same condition drying process of several hazelnut cultivars from different boreal hemisphere areas. Fifty lots of hazelnuts (Corylus avellana), belonging to eight cultivars from seven regions in four countries, were analyzed for fungal microbiota, describing both load levels and species diversity. For this purpose, a polyphasic approach consisting of morphological examination (optical and scanning electron microscope observation) and molecular characterization [PCR-DGGE analysis and sequence analyses of the internal transcribed spacer (ITS)] was performed. The results show that different fungal populations occur in dried hazelnuts regardless of their geographical area of production. Although some varieties appear to be relatively less susceptible, species related to Aspergillus, such as A. commune and A. ochraceus, Penicillium, including P. commune, P. solitum, and P. expansum, and Rhizopus, for instance, R. stolonifer and R. oryzae, have generally been found. A related character "hazelnut cultivar-fungi" was found for species related to the genera Trichoderma and Fusarium, including F. oxyxporum, F. solani, and F. falciforme. All 14 species found are known to host pathogenic strains. Therefore, their presence in a ready-to-eat product, such as dried hazelnuts, can pose a real danger to the consumer. Based on these considerations, the development of new protective strategies seems highly desirable. The species-level description of the contaminating fungal community acquired through this study is the starting point for the development of tailor-made protective biotechnologies.

11.
Microorganisms ; 10(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35208917

RESUMO

Dietary probiotic supplementation has the potential to enhance the health of fish and their disease resistance. In this study, some properties of ten Lactiplantibacillus plantarum strains have been evaluated, for their potential use as probiotics in freshwater fish diet. In particular, antimicrobial activity, antioxidant activity, the potentiality to survive the gastrointestinal transit and persist in the intestine, were evaluated in vitro. The experimental tests were carried out at 15 °C and 30 °C to determine the suitability of these lactic acid bacteria to be used as probiotics in the diet of fish grown at different temperatures. The results demonstrated that the evaluated Lp. plantarum strains, which often have significant differences among themselves, are characterized by important functional characteristics such as cell surface properties (auto-aggregation and hydrophobicity), ability to produce antioxidant substances, capacity to survive in the presence of 0.3% bile salts and acidic environment (2.5 pH), antagonistic activity against some fish opportunistic pathogens (A. salmonicida, Ps. aeruginosa, E. coli and C. freundii) and other unwanted bacteria present in fish products (S. aureus and L. innocua). The outcomes suggest that these Lp. plantarum strains may be candidates as probiotics in warm- and cold-water aquaculture.

12.
STAR Protoc ; 3(1): 101146, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35146448

RESUMO

Here we describe a protocol for the generation of site-specific DNA damage, including double and single strand breaks, using the 405 nm laser of a confocal microscope in cells pre-sensitized with Hoechst. This is a simple approach, particularly useful to assess the involvement of proteins and the roles of liquid-liquid phase separation in DNA damage repair. Examples of transfection protocol, drug concentrations, and microscopy are provided, although optimization may be needed for specific experimental setups and cell lines used. For complete details on the use and execution of this protocol, please refer to Levone et al. (2021).


Assuntos
Dano ao DNA , Reparo do DNA , Linhagem Celular , Dano ao DNA/genética , Lasers , Transfecção
13.
Am J Hum Genet ; 108(8): 1512-1525, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34242570

RESUMO

The pathogenic significance of nucleotide variants commonly relies on nucleotide position within the gene, with exonic changes generally attributed to quantitative or qualitative alteration of protein biosynthesis, secretion, activity, or clearance. However, these changes may exert pleiotropic effects on both protein biology and mRNA splicing due to the overlapping of the amino acid and splicing codes, thus shaping the disease phenotypes. Here, we focused on hemophilia A, in which the definition of F8 variants' causative role and association to bleeding phenotypes is crucial for proper classification, genetic counseling, and management of affected individuals. We extensively characterized a large panel of hemophilia A-causing variants (n = 30) within F8 exon 19 by combining and comparing in silico and recombinant expression analyses. We identified exonic variants with pleiotropic effects and dissected the altered protein features of all missense changes. Importantly, results from multiple prediction algorithms provided qualitative results, while recombinant assays allowed us to correctly infer the likely phenotype severity for 90% of variants. Molecular characterization of pathogenic variants was also instrumental for the development of tailored correction approaches to rescue splicing affecting variants or missense changes impairing protein folding. A single engineered U1snRNA rescued mRNA splicing of nine different variants and the use of a chaperone-like drug resulted in improved factor VIII protein secretion for four missense variants. Overall, dissection of the molecular mechanisms of a large panel of HA variants allowed precise classification of HA-affected individuals and favored the development of personalized therapeutic approaches.


Assuntos
Éxons , Fator VIII/genética , Fator VIII/metabolismo , Hemofilia A/patologia , Mutação , Splicing de RNA , RNA Mensageiro/genética , Biologia Computacional , Hemofilia A/genética , Hemofilia A/metabolismo , Humanos , Fenótipo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo
14.
J Fungi (Basel) ; 7(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066127

RESUMO

Ascosphaera apis is an entomopathogenic fungus that affects honeybees. In stressful conditions, this fungus (due not only to its presence, but also to the combination of other biotic and abiotic stressors) can cause chalkbrood disease. In recent years, there has been increasing attention paid towards the use of lactic acid bacteria (LAB) in the honeybees' diets to improve their health, productivity and ability to resist infections by pathogenic microorganisms. The screening of 22 strains of Lactiplantibacillus plantarum, isolated from the gastrointestinal tracts of honeybees and beebread, led to the selection of five strains possessing high antagonistic activity against A. apis. This study focused on the antifungal activity of these five strains against A. apis DSM 3116 and DSM 3117 using different matrices: cell lysate, broth culture, cell-free supernatant and cell pellet. In addition, some functional properties and the antioxidant activity of the five L. plantarum strains were evaluated. All five strains exhibited high antagonistic activity against A. apis, good surface cellular properties (extracellular polysaccharide (EPS) production and biofilm formation) and antioxidant activity. Although preliminary, these results are encouraging, and in future investigations, the effectiveness of these bacteria as probiotics in honeybee nutrition will be tested in vivo in the context of an eco-friendly strategy for the biological control of chalkbrood disease.

15.
Br J Haematol ; 194(2): 453-462, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34109608

RESUMO

The short half-life of coagulation factor IX (FIX) for haemophilia B (HB) therapy has been prolonged through fusion with human serum albumin (HSA), which drives the neonatal Fc receptor (FcRn)-mediated recycling of the chimera. However, patients would greatly benefit from further FIX-HSA half-life extension. In the present study, we designed a FIX-HSA variant through the engineering of both fusion partners. First, we developed a novel cleavable linker combining the two FIX activation sites, which resulted in improved HSA release. Second, insertion of the FIX R338L (Padua) substitution conferred hyperactive features (sevenfold higher specific activity) as for FIX Padua alone. Furthermore, we exploited an engineered HSA (QMP), which conferred enhanced human (h)FcRn binding [dissociation constant (KD ) 0·5 nM] over wild-type FIX-HSA (KD 164·4 nM). In hFcRn transgenic mice, Padua-QMP displayed a significantly prolonged half-life (2·7 days, P < 0·0001) versus FIX-HSA (1 day). Overall, we developed a novel FIX-HSA protein with improved activity and extended half-life. These combined properties may result in a prolonged functional profile above the therapeutic threshold, and thus in a potentially widened therapeutic window able to improve HB therapy. This rational engineering of both partners may pave the way for new fusion strategies for the design of engineered biotherapeutics.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Fator IX/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Albumina Sérica Humana/farmacologia , Animais , Fator IX/genética , Feminino , Meia-Vida , Hemofilia B/sangue , Hemofilia B/tratamento farmacológico , Humanos , Masculino , Camundongos Transgênicos , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética , Albumina Sérica Humana/genética
16.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322589

RESUMO

The fidelity of protein synthesis, a process shaped by several mechanisms involving specialized ribosome regions and external factors, ensures the precise reading of sense and stop codons. However, premature termination codons (PTCs) arising from mutations may, at low frequency, be misrecognized and result in PTC suppression, named ribosome readthrough, with production of full-length proteins through the insertion of a subset of amino acids. Since some drugs have been identified as readthrough inducers, this fidelity drawback has been explored as a therapeutic approach in several models of human diseases caused by nonsense mutations. Here, we focus on the mechanisms driving translation in normal and aberrant conditions, the potential fates of mRNA in the presence of a PTC, as well as on the results obtained in the research of efficient readthrough-inducing compounds. In particular, we describe the molecular determinants shaping the outcome of readthrough, namely the nucleotide and protein context, with the latter being pivotal to produce functional full-length proteins. Through the interpretation of experimental and mechanistic findings, mainly obtained in lysosomal and coagulation disorders, we also propose a scenario of potential readthrough-favorable features to achieve relevant rescue profiles, representing the main issue for the potential translatability of readthrough as a therapeutic strategy.


Assuntos
Códon sem Sentido/genética , Códon de Terminação/genética , Animais , Humanos , Mutação/genética , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo
17.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228018

RESUMO

OTC splicing mutations are generally associated with the severest and early disease onset of ornithine transcarbamylase deficiency (OTCD), the most common urea cycle disorder. Noticeably, splicing defects can be rescued by spliceosomal U1snRNA variants, which showed their efficacy in cellular and animal models. Here, we challenged an U1snRNA variant in the OTCD mouse model (spf/ash) carrying the mutation c.386G > A (p.R129H), also reported in OTCD patients. It is known that the R129H change does not impair protein function but affects pre-mRNA splicing since it is located within the 5' splice site. Through in vitro studies, we identified an Exon Specific U1snRNA (ExSpeU1O3) that targets an intronic region downstream of the defective exon 4 and rescues exon inclusion. The adeno-associated virus (AAV8)-mediated delivery of the ExSpeU1O3 to mouse hepatocytes, although in the presence of a modest transduction efficiency, led to increased levels of correct OTC transcripts (from 6.1 ± 1.4% to 17.2 ± 4.5%, p = 0.0033). Consistently, this resulted in increased liver expression of OTC protein, as demonstrated by Western blotting (~3 fold increase) and immunostaining. Altogether data provide the early proof-of-principle of the efficacy of ExSpeU1 in the spf/ash mouse model and encourage further studies to assess the potential of RNA therapeutics for OTCD caused by aberrant splicing.


Assuntos
Dependovirus/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia , Ornitina Carbamoiltransferase/genética , Splicing de RNA , RNA Nuclear Pequeno/genética , Animais , Sequência de Bases , Dependovirus/metabolismo , Modelos Animais de Doenças , Éxons , Terapia Genética/métodos , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Íntrons , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Ornitina Carbamoiltransferase/metabolismo , Doença da Deficiência de Ornitina Carbomoiltransferase/enzimologia , Doença da Deficiência de Ornitina Carbomoiltransferase/patologia , Sítios de Splice de RNA , RNA Nuclear Pequeno/metabolismo
18.
Microorganisms ; 8(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066358

RESUMO

Lactic acid bacteria could positively affect the health of honey bees, including nutritional supplementation, immune system development and pathogen colonization resistance. Based on these considerations the present study evaluated predominant Lactic Acid Bacteria (LAB) species from beebread as well as from the social stomach and midgut of Apis mellifera ligustica honey bee foragers. In detail, for each compartment, the diversity in species and biotypes was ascertained through multiple culture-dependent approaches, consisting of Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE), 16S rRNA gene sequencing and Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR). The study of a lactic acid bacteria community, performed with PCR-DGGE and sequence analysis targeting the V1-V3 region of the 16S rRNA gene (rDNA), highlighted the presence of a few species, including Apilactobacillus kunkeei, Lactiplantibacillus plantarum, Fructobacillus fructosus, Levilactobacillus brevis and Lactobacillus delbrueckii subsp. lactis. Depending on the different compartments, diverse levels of biodiversity in species were found. Particularly, a very low inter-species biodiversity was detected in the midgut that was prevalently dominated by the presence of Apilactobacillus kunkeei. On the other hand, the beebread was characterized by a reasonable biodiversity showing the presence of five species and the predominance of Apilactobacillus kunkeei, Lactiplantibacillus plantarum and Fructobacillus fructosus. The RAPD-PCR analysis performed on the three predominant species allowed the differentiation into several biotypes for each species. Moreover, a relationship between biotypes and compartments has been detected and each biotype was able to express a specific biochemical profile. The biotypes that populated the social stomach and midgut were able to metabolize sugars considered toxic for bees while those isolated from beebread could contribute to release useful compounds with functional properties. Based on this knowledge, new biotechnological approaches could be developed to improve the health of honey bees and the quality of bee products.

19.
J Food Sci Technol ; 57(11): 3973-3979, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33071319

RESUMO

The use of malolactic starter cultures, often offer no guarantee of microbiological success due to the chemical and physical factors (pH, ethanol, SO2, nutrient availability) that occur during the winemaking process. This study was born with the aim of improving the performance of the lactic acid bacteria used as a starter culture in the de-acidification of wines. Two commercial strains of Oenococcus oeni, were used. Was evaluated the effect of exogenous l-proline added during the bacterial growth, on the improvement of their survival in the presence of different ethanol concentrations and their ability to degrade l-malic acid in synthetic wine with the presence of 12% (v/v) and 13% (v/v) of ethanol. The results showed that l-proline improve ethanol tolerance and so the malolactic performances of O. oeni. This work represents an important strategy to ensure good vitality and improve the performance of the malolactic starter.

20.
Foods ; 9(11)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113800

RESUMO

Apilactobacillus kunkeei is an insect symbiont with documented beneficial effects on the health of honeybees. It belongs to fructophilic lactic acid bacteria (FLAB), a subgroup of lactic acid bacteria (LAB) notably recognized for their safe status. This fact, together with its recurrent isolation from hive products that are traditionally part of the human diet, suggests its possible safe use as human probiotic. Our data concerning three strains of A. kunkeei isolated from bee bread and honeybee gut highlighted several interesting features, such as the presence of beneficial enzymes (ß-glucosidase, ß-galactosidase and leucine arylamidase), the low antibiotic resistance, the ability to inhibit P. aeruginosa and, for one tested strain, E. faecalis, and an excellent viability in presence of high sugar concentrations, especially for one strain tested in sugar syrup stored at 4 °C for 30 d. This datum is particularly stimulating, since it demonstrates that selected strains of A. kunkeei can be used for the probiotication of fruit preparations, which are often used in the diet of hospitalized and immunocompromised patients. Finally, we tested for the first time the survival of strains belonging to the species A. kunkeei during simulated gastrointestinal transit, detecting a similar if not a better performance than that showed by Lacticaseibacillus rhamnosus GG, used as probiotic control in each trial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA