Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934904

RESUMO

Compound-specific isotope analysis (CSIA) is an established tool to track the in situ transformation of organic chemicals at contaminated sites. In this work, we evaluated the potential of multi-element CSIA to assess biodegradation of 2,3-dichloroaniline (2,3-DCA), which is a major industrial feedstock. Using controlled laboratory experiments, we determined, for the first time, negligible carbon (<0.5‰) and hydrogen (<10‰) isotope fractionation and a significant inverse nitrogen isotope fractionation (>10‰) during aerobic 2,3-DCA biodegradation by a mixed enrichment culture. The tentative identification of a glutamate conjugate of 2,3-DCA as a reaction intermediate indicates that the initial multistep enzymatic reaction may be rate-limiting. The formation of the glutamate adduct would increase the bond energy at the N atom, thus likely explaining the observed inverse N isotope fractionation. The corresponding nitrogen enrichment factor was +6.8 ± 0.6‰. This value was applied to investigate the in situ 2,3-DCA biodegradation at a contaminated site where the carbon and nitrogen isotope signatures from field samples suggested similar aerobic processes by native microorganisms. Under the assumption of the applicability of the Rayleigh model in a pilot wetland treating contaminated groundwater, the extent of biodegradation was estimated to be up to 80-90%. This study proposes multi-element CSIA as a novel application to study 2,3-DCA fate in groundwater and surface water and provides insights into biodegradation pathways.

2.
Water Res ; 201: 117305, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119968

RESUMO

Bioremediation through the injection of electron donors and bacterial cultures is effective at treating chlorinated solvent contamination. However, it has had limited application in low permeability zones where amendments cannot be delivered successfully. This field-scale study investigated the application of electrokinetics to enhance the delivery of lactate at a clay site contaminated with chlorinated solvents. Groundwater and soil samples were collected before, during and for 1 year after the 71-day field test and analyzed for a wide suite of chemical and biological parameters. Lactate was successfully delivered to all monitoring locations. Lactate emplacement resulted in the stimulation of bacterial populations, specifically within the phylum Firmicutes, which contains fermenters and strict anaerobes. This likely led to biodegradation, as the field trial resulted in significant decreases in both soil and aqueous phase chlorinated solvent concentrations. Contaminant decreases were also partially attributable to dilution, given evidence of some advective lactate flux. This research provides evidence that electrokinetically-enhanced bioremediation has potential as a treatment strategy for contaminated low permeability strata.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Argila , Ácido Láctico , Solventes , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 55(5): 2968-2979, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33557520

RESUMO

The γ isomer of hexachlorocyclohexane (HCH), also known as lindane, is a carcinogenic persistent organic pollutant. Lindane was used worldwide as an agricultural insecticide. Legacy soil and groundwater contamination with lindane and other HCH isomers is still a big concern. The biotic reductive dechlorination of HCH to nondesirable and toxic lower chlorinated compounds such as monochlorobenzene (MCB) and benzene, among others, has been broadly documented. Here, we demonstrate that complete biodegradation of lindane to nontoxic end products is attainable using a sequential treatment approach with three mixed anaerobic microbial cultures referred to as culture I, II, and III. Biaugmentation with culture I achieved dechlorination of lindane to MCB and benzene. Culture II was able to dechlorinate MCB to benzene, and finally, culture III carried out methanogenic benzene degradation. Distinct Dehalobacter populations, corresponding to different 16S rRNA amplicon sequence variants in culture I and culture II, were responsible for lindane and MCB dechlorination, respectively. This study continues to highlight key roles of Dehalobacter as chlorobenzene- and HCH -respiring bacteria and demonstrates that sequential treatment with specialized anaerobic cultures may be explored at field sites in order to address legacy soil and groundwater contamination with HCH.


Assuntos
Hexaclorocicloexano , Inseticidas , Anaerobiose , Biodegradação Ambiental , RNA Ribossômico 16S/genética
4.
PLoS One ; 15(4): e0231219, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32282845

RESUMO

The historic use of chlordecone (C10Cl10O) as a pesticide to control banana weevil infestations has resulted in pollution of large land areas in the French West Indies. Although currently banned, chlordecone persists because it adsorbs strongly to soil and its complex bis-homocubane structure is stable, particularly under aerobic conditions. Abiotic chemical transformation catalyzed by reduced vitamin B12 has been shown to break down chlordecone by opening the cage structure to produce C9 polychloroindenes. More recently these C9 polychloroindenes were also observed as products of anaerobic microbiological transformation. To investigate the anaerobic biotransformation of chlordecone by microbes native to the French West Indies, microcosms were constructed anaerobically from chlordecone impacted Guadeloupe soil and sludge to mimic natural attenuation and eletron donor-stimulated reductive dechlorination. Original microcosms and transfers were incubated over a period of 8 years, during which they were repeatedly amended with chlordecone and electron donor (ethanol and acetone). Using LC-MS, chlordecone and degradation products were detected in all the biologically active microcosms. Observed products included monohydro-, dihydro- and trihydrochlordecone derivatives (C10Cl10-nO2Hn; n = 1,2,3), as well as "open cage" C9 polychloroindene compounds (C9Cl5-nH3+n n = 0,1,2) and C10 carboxylated polychloroindene derivatives (C10Cl4-nO2H4+n, n = 0-3). Products with as many as 9 chlorine atoms removed were detected. These products were not observed in sterile (poisoned) microcosms. Chlordecone concentrations decreased in active microcosms as concentrations of products increased, indicating that anaerobic dechlorination processes have occurred. The data enabled a crude estimation of partitioning coefficients between soil and water, showing that carboxylated intermediates sorb poorly and as a consequence may be flushed away, while polychlorinated indenes sorb strongly to soil. Microbial community analysis in microcosms revealed enrichment of anaerobic fermenting and acetogenic microbes possibly involved in anaerobic chlordecone biotransformation. It thus should be possible to stimuilate anaerobic dechlorination through donor amendment to contaminated soils, particularly as some metabolites (in particular pentachloroindene) were already detected in field samples as a result of intrinsic processes. Extensive dechlorination in the microcosms, with evidence for up to 9 Cl atoms removed from the parent molecule is game-changing, giving hope to the possibility of using bioremediation to reduce the impact of CLD contamination.


Assuntos
Clordecona/análise , Inseticidas/análise , Microbiologia do Solo , Solo/química , Anaerobiose , Biodegradação Ambiental , Conservação dos Recursos Naturais , Guadalupe , Poluentes do Solo/análise , Índias Ocidentais
5.
Environ Sci Process Impacts ; 22(3): 663-678, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159535

RESUMO

Organohalide respiring bacteria (OHRB) express reductive dehalogenases for energy conservation and growth. Some of these enzymes catalyze the reductive dehalogenation of chlorinated and brominated pollutants in anaerobic subsurface environments, providing a valuable ecosystem service. Dehalococcoides mccartyi strains have been most extensively studied owing to their ability to dechlorinate all chlorinated ethenes - most notably carcinogenic vinyl chloride - to ethene. The genomes of OHRB, particularly obligate OHRB, often harbour multiple putative reductive dehalogenase genes (rdhA), most of which have yet to be characterized. We recently sequenced and closed the genomes of eight new strains, increasing the number of available D. mccartyi genomes in NCBI from 16 to 24. From all available OHRB genomes, we classified predicted translations of reductive dehalogenase genes using a previously established 90% amino acid pairwise identity cut-off to identify Ortholog Groups (OGs). Interestingly, the majority of D. mccartyi dehalogenase gene sequences, once classified into OGs, exhibited a remarkable degree of synteny (gene order) in all genomes sequenced to date. This organization was not apparent without the classification. A high degree of synteny indicates that differences arose from rdhA gene loss rather than recombination. Phylogenetic analysis suggests that most rdhA genes have a long evolutionary history in the Dehalococcoidia with origin prior to speciation of Dehalococcoides and Dehalogenimonas. We also looked for evidence of synteny in the genomes of other species of OHRB. Unfortunately, there are too few closed Dehalogenimonas genomes to compare at this time. There is some partial evidence for synteny in the Dehalobacter restrictus genomes, but here too more closed genomes are needed for confirmation. Interestingly, we found that the rdhA genes that encode enzymes that catalyze dehalogenation of industrial pollutants are the only rdhA genes with strong evidence of recent lateral transfer - at least in the genomes examined herein. Given the utility of the RdhA sequence classification to comparative analyses, we are building a public web server () for the community to use, which allows users to add and classify new sequences, and download the entire curated database of reductive dehalogenases.


Assuntos
Chloroflexi , Ecossistema , Genoma Bacteriano , Halogenação , Filogenia
6.
Environ Sci Technol ; 54(1): 255-265, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31830788

RESUMO

Intensive historical and worldwide use of pesticide formulations containing hexachlorocyclohexane (HCH) has led to widespread contamination. We derived four anaerobic enrichment cultures from HCH-contaminated soil capable of sustainably dechlorinating each of α-, ß-, γ-, and δ-HCH isomers stoichiometrically to benzene and monochlorobenzene (MCB). For each isomer, the dechlorination rates, inferred from production rates of the dechlorinated products, MCB and benzene, increased progressively from <3 to ∼12 µM/day over 2 years. The molar ratio of benzene to MCB produced was a function of the substrate isomer and ranged from ß (0.77 ± 0.15), α (0.55 ± 0.09), γ (0.13 ± 0.02), to δ (0.06 ± 0.02) in accordance with pathway predictions based on prevalence of antiperiplanar geometry. Data from 16S rRNA gene amplicon sequencing and quantitative PCR revealed significant increases in the absolute abundances of Pelobacter and Dehalobacter, most notably in the α-HCH and δ-HCH cultures. Cultivation with a different HCH isomer resulted in distinct bacterial communities, but similar archaeal communities. This study provides the first direct comparison of shifts in anaerobic microbial communities induced by the dechlorination of distinct HCH isomers. It also uncovers candidate microorganisms responsible for the dechlorination of α-, ß-, γ-, and δ-HCH, a key step toward better understanding and monitoring of natural attenuation processes and improving bioremediation technologies for HCH-contaminated sites.


Assuntos
Hexaclorocicloexano , Microbiota , Anaerobiose , Benzeno , Biodegradação Ambiental , Clorobenzenos , RNA Ribossômico 16S
7.
ISME J ; 13(1): 24-38, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30104577

RESUMO

Dehalococcoides mccartyi are obligate organohalide-respiring bacteria that play an important detoxifying role in the environment. They have small genomes (~1.4 Mb) with a core region interrupted by two high plasticity regions (HPRs) containing dozens of genes encoding reductive dehalogenases involved in organohalide respiration. The genomes of eight new strains of D. mccartyi were closed from metagenomic data from a related set of enrichment cultures, bringing the total number of genomes to 24. Two of the newly sequenced strains and three previously sequenced strains contain CRISPR-Cas systems. These D. mccartyi CRISPR-Cas systems were found to primarily target prophages and genomic islands. The genomic islands were identified either as integrated into D. mccartyi genomes or as circular extrachromosomal elements. We observed active circularization of the integrated genomic island containing vcrABC operon encoding the dehalogenase (VcrA) responsible for the transformation of vinyl chloride to non-toxic ethene. We interrogated archived DNA from established enrichment cultures and found that the CRISPR array acquired three new spacers in 11 years. These data provide a glimpse into dynamic processes operating on the genomes distinct to D. mccartyi strains found in enrichment cultures and provide the first insights into possible mechanisms of lateral DNA exchange in D. mccartyi.


Assuntos
Bactérias/enzimologia , Bactérias/genética , Sistemas CRISPR-Cas , DNA Bacteriano/genética , DNA Circular/genética , Ilhas Genômicas/genética , Bactérias/metabolismo , Biodegradação Ambiental , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/genética , Genoma Bacteriano , Halogenação
8.
Environ Sci Technol ; 52(22): 13391-13398, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30371071

RESUMO

Chlorobenzenes are ubiquitous contaminants in groundwater and soil at many industrial sites. Previously, we demonstrated the natural attenuation of chlorobenzenes and benzene at a contaminated site inferred from a 5 year site investigation and parallel laboratory microcosm studies. To identify the microbes responsible for the observed dechlorination of chlorobenzenes, the microbial community was surveyed using 16S rRNA gene amplicon sequencing. Members of the Dehalobacter and Dehalococcoides are reported to respire chlorobenzenes; however, neither were abundant in our sediment microcosms. Instead, we observed a significant increase in the relative abundance of Dehalogenimonas from <1% to 16-30% during dechlorination of 1,2,4-trichlorobenzene (TCB), 1,2-dichlorobenzene (DCB), and 1,3-DCB over 19 months. Quantitative PCR (qPCR) confirmed that Dehalogenimonas gene copies increased by 2 orders of magnitude with an average yield of 3.6 ± 2.3 g cells per mol Cl- released ( N = 12). In transfer cultures derived from sediment microcosms, dechlorination of 1,4-DCB and monochlorobenzene (MCB) was carried out by Dehalobacter spp. with a growth yield of 3.0 ± 2.1 g cells per mol Cl- released ( N = 5). Here we show that a Dehalogenimonas population respire 1,2,4-TCB and 1,2-/1,3-DCB isomers. This finding emphasizes the need to monitor a broader spectrum of organohalide-respiring bacteria, including Dehalogenimonas, at sites contaminated with halogenated organic compounds.


Assuntos
Clorobenzenos , Biodegradação Ambiental , RNA Ribossômico 16S
9.
Environ Sci Technol ; 52(1): 22-31, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29178800

RESUMO

A five-year site investigation was conducted at a former chemical plant in Nanjing, China. The main contaminants were 1,2,4-trichlorobenzene (TCB) reaching concentrations up to 7300 µg/L, dichlorobenzene (DCB) isomers, monochlorobenzene (MCB), and benzene. Over time, these contaminants naturally attenuated to below regulatory levels under anaerobic conditions. To confirm the transformation processes and to explore the mechanisms, a corresponding laboratory microcosm study was completed demonstrating that 1,2,4-TCB was dechlorinated to 1,2-DCB, 1,3-DCB, and 1,4-DCB in approximately 2%/10%/88% molar proportions. The DCB isomers were dechlorinated via MCB to benzene, and, finally, benzene was degraded under prevailing sulfate-reducing conditions. Dechlorination could not be attributed to known dechlorinators Dehalobacter or Dehalococcoides, while anaerobic benzene degradation was mediated by microbes affiliated to a Deltaproteobacterium ORM2, previously associated with this activity. Unidentified organic compounds, possibly aromatic compounds related to past on-site production processes, were fueling the dechlorination reactions in situ. The microcosm study confirmed transformation processes inferred from field data and provided needed assurance for natural attenuation. Activity-based microcosm studies are often omitted from site characterization in favor of rapid and less expensive molecular surveys. However, the value of microcosm studies for confirming transformation processes, establishing electron balances, assessing cocontaminant inhibition, and validating appropriate monitoring tools is clear. At complex sites impacted by multiple compounds with poorly characterized transformation mechanisms, activity assays provide valuable data to incorporate into the conceptual site model to most effectively inform remediation alternatives.


Assuntos
Benzeno , Clorobenzenos , Anaerobiose , Biodegradação Ambiental , China
10.
Environ Sci Technol ; 50(14): 7658-70, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27305345

RESUMO

Nanoscale zerovalent iron (nZVI) is an emerging technology for the remediation of contaminated sites. However, there are concerns related to the impact of nZVI on in situ microbial communities. In this study, the microbial community composition at a contaminated site was monitored over two years following the injection of nZVI stabilized with carboxymethyl cellulose (nZVI-CMC). Enhanced dechlorination of chlorinated ethenes to nontoxic ethene was observed long after the expected nZVI oxidation. The abundance of Dehalococcoides (Dhc) and vinyl chloride reductase (vcrA) genes, monitored using qPCR, increased by over an order of magnitude in nZVI-CMC-impacted wells. The entire microbial community was tracked using 16S rRNA gene amplicon pyrosequencing. Following nZVI-CMC injection, a clear shift in microbial community was observed, with most notable increases in the dechlorinating genera Dehalococcoides and Dehalogenimonas. This study suggests that coupled abiotic degradation (i.e., from reaction with nZVI) and biotic degradation fueled by CMC led to the long-term degradation of chlorinated ethenes at this field site. Furthermore, nZVI-CMC addition stimulated dehalogenator growth (e.g., Dehalococcoides) and biotic degradation of chlorinated ethenes.


Assuntos
Carboximetilcelulose Sódica , Ferro , Chloroflexi , Halogenação , RNA Ribossômico 16S
11.
J Hazard Mater ; 313: 37-48, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27054663

RESUMO

Two low cost solid organic materials, sawdust and peat, were tested in laboratory batch microcosm and flow-through column experiments to determine their suitability for application in permeable reactive barriers (PRBs) supporting biodegradation of trichloroethene (TCE). In microcosms with peat, TCE (∼30µM) was sequentially and completely degraded to cis-dichloroethene (cDCE), vinyl chloride, and ethene through reductive dechlorination. In microcosms with sawdust, reductive dechlorination of TCE stopped at cDCE and high methane production (up to 3000µM) was observed. 16S rRNA gene copy numbers of Dehalobacter and Archaea were higher (1000 and 10 times, respectively) in sawdust microcosms than those in peat microcosms. Dehalococcoides and vcrA gene copy numbers were 10 times higher in peat microcosms than in sawdust microcosms. These gene copy number differences are consistent with the extent of TCE degradation and production of methane in the microcosms. Flow-through column experiments showed that hydraulic conductivity reduction with time was consistently greater in the sawdust column compared to the peat column. The greater conductivity reduction was likely due to biofouling and methane gas bubble formation. The experimental observations indicate that peat has potential to be a better solid organic material than sawdust to support reductive dechlorination of TCE in PRB applications.


Assuntos
Microbiologia do Solo , Solo/química , Tricloroetileno/metabolismo , Madeira/química , Archaea , Biodegradação Ambiental , Genes Bacterianos , Peptococcaceae , RNA Ribossômico 16S
12.
Environ Sci Technol ; 49(14): 8648-56, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26090687

RESUMO

A pilot scale injection of nanoscale zerovalent iron (nZVI) stabilized with carboxymethyl cellulose (CMC) was performed at an active field site contaminated with a range of chlorinated volatile organic compounds (cVOC). The cVOC concentrations and microbial populations were monitored at the site before and after nZVI injection. The remedial injection successfully reduced parent compound concentrations on site. A period of abiotic degradation was followed by a period of enhanced biotic degradation. Results suggest that the nZVI/CMC injection created conditions that stimulated the native populations of organohalide-respiring microorganisms. The abundance of Dehalococcoides spp. immediately following the nZVI/CMC injection increased by 1 order of magnitude throughout the nZVI/CMC affected area relative to preinjection abundance. Distinctly higher cVOC degradation occurred as a result of the nZVI/CMC injection over a 3 week evaluation period when compared to control wells. This suggests that both abiotic and biotic degradation occurred following injection.


Assuntos
Carboximetilcelulose Sódica/química , Poluição Ambiental , Recuperação e Remediação Ambiental/métodos , Ferro/química , Compostos Orgânicos Voláteis , Biodegradação Ambiental , Chloroflexi/genética , Chloroflexi/isolamento & purificação , Halogenação , Ontário , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA