Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611238

RESUMO

Semi-crystalline natural polymers are involved in many technological processes. Biopolymers having identical chemical compositions can differ in reactivity in heterogeneous transformations depending on their crystal structure (polymorphic modification). This paper compares the crystal structure recrystallization processes occurring in natural polysaccharides (cellulose, chitin, and starch) in the individual form and as a component of native biomass. Aqueous treatment of pre-amorphized semi-crystalline biopolymers was shown to result in swelling, thus alleviating the kinetic restrictions imposed on the restoration of crystalline regions and phase transition to the thermodynamically more stable polymorphic modification. During recrystallization, cellulose I in the individual form and within plant-based biomass undergoes a transition to the more stable cellulose II. A similar situation was demonstrated for α- and ß-chitin, which recrystallize only into the α-polymorphic modification in the case of both individual polymers and native materials. Recrystallization of A-, B-, and C-type starch, both in the individual form and within plant-based flour, during aqueous treatment, results in a phase transition, predominantly to the B-type starch. The recrystallization process depends on the temperature of aqueous treatment; longer treatment duration has almost no effect on the recrystallization degree of polymers, both in the individual form and within native materials.

2.
Materials (Basel) ; 16(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570089

RESUMO

In this study, the synthesis of tungsten carbides in a copper matrix by spark plasma sintering (SPS) is conducted and the microstructure formation mechanisms of the composite materials are investigated. The reaction mixtures were prepared by the high-energy mechanical milling (MM) of W, C and Cu powders. The influence of the MM time and SPS temperature on the tungsten carbide synthesis in an inert copper matrix was analyzed. It was demonstrated that the milling duration is a critical factor for creating the direct contacts between the W and C reactants and increasing the reactive transformation degree. A WC-W2C-Cu composite was fabricated from the W-C-3Cu powder mixture milled for 10 min and subjected to SPS at a temperature of 980 °C for 5 min. The formation of unconventional microstructures with Cu-rich regions is related to inter-particle melting during SPS. The WC-W2C-Cu composite showed a promising combination of mechanical and functional properties: a hardness of 300 HV, an electrical conductivity of 24% of the International Annealed Copper Standard, a residual porosity of less than 5%, a coefficient of friction in pair with a WC-6Co counterpart of 0.46, and a specific wear rate of the material of 0.52 × 10-5 mm3 N-1 m-1.

3.
Polymers (Basel) ; 14(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365568

RESUMO

This study demonstrated the feasibility of comprehensive enzymatic conversion of starch for non-waste applications in food industry. Enzymatic conversion of starch gives rise to nano-sized particles that can be used for manufacturing biodegradable and edible packaging materials and glucose syrup for replacing sugar in confectionery formulations. The 96 h enzymatic hydrolysis yielded starch nanoparticles smaller than 100 nm. Films based on nano-sized starch particles have promising physicochemical properties for manufacturing biodegradable and edible packaging materials. Such properties as reduced moisture content, increased homogeneity, crystallinity, and high initial thermal stability improve the mechanical and performance characteristics of the final food packaging materials. During film formation from starch subjected to preliminary mechanical amorphization, the polymer chain is recrystallized. The C-type crystal structure of starch is converted to the B-type structure. The supernatant obtained by starch hydrolysis can be used for producing glucose syrup. The resulting glucose syrup can be used as a sugar substitute in production of confectionery products. No objective technological differences in properties of glucose syrup obtained by comprehensive conversion of starch and the commercially available glucose syrup derived from sucrose were revealed.

4.
Nutrients ; 14(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35631133

RESUMO

This study presents findings on the biological action of an integrated supplement containing the following components involved in osteogenesis and mineralization: vitamin D and silicon in the bioavailable and soluble form. A hypothesis that these components potentiate one another's action and make calcium absorption by the body more efficient was tested. Biological tests of the effect of vitamin D and silicon chelates on bone fracture healing and bone turnover were conducted using ICR mice and albino Wistar rats. Radiographic and biochemical studies show that the supplement simultaneously containing silicon chelates and vitamin D stimulates bone tissue regeneration upon mechanical defects and accelerates differentiation of osteogenic cells, regeneration of spongy and compact bones, and restoration of bone structure due to activation of osteoblast performance. Bone structure restoration was accompanied by less damage to skeletal bones, apparently due to better absorption of calcium from food. The studied supplement has a similar effect when used to manage physiologically induced decalcification, thus holding potential for the treatment of osteomalacia during pregnancy or occupational diseases (e.g., for managing bone decalcification in astronauts).


Assuntos
Consolidação da Fratura , Vitamina D , Animais , Remodelação Óssea , Cálcio , Cálcio da Dieta , Quelantes , Feminino , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Ratos , Silício/farmacologia , Vitamina D/farmacologia , Vitamina D/fisiologia , Vitaminas
5.
Materials (Basel) ; 15(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35329537

RESUMO

In the present work, complex powder alloys containing spinel as a minor phase were produced by mechanical alloying in a high-energy planetary ball mill from a 33Al-45Cu-22Fe (at.%) powder blend. These alloys show characteristics suitable for the synthesis of promising catalysts. The alloying was conducted in two stages: at the first stage, a Cu+Fe powder mixture was ball-milled for 90 min; at the second stage, Al was added, and the milling process was continued for another 24 min. The main products of mechanical alloying formed at each stage were studied using X-ray diffraction phase analysis, Mössbauer spectroscopy, transmission electron microscopy, and energy-dispersive spectroscopy. At the end of the first stage, crystalline iron was not found. The main product of the first stage was a metastable Cu(Fe) solid solution with a face-centered cubic structure. At the second stage, the Cu(Fe) solid solution transformed to Cu(Al), several Fe-containing amorphous phases, and a spinel phase. The products of the two-stage process were different from those of the single-stage mechanical alloying of the ternary elemental powder mixture; the formation of undesirable intermediate phases was avoided, which ensured excellent composition uniformity. A sequence of solid-state reactions occurring during mechanical alloying was proposed. Mesopores and a spinel phase were the features of the two-stage milled material (both are desirable for the target catalyst).

6.
Polymers (Basel) ; 13(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34833270

RESUMO

Polyacrylamide gel electrophoresis is widely used for studying proteins and protein-containing objects. However, it is employed most frequently as a qualitative method rather than a quantitative one. This paper shows the feasibility of routine digital image acquisition and mathematical processing of electropherograms for protein quantification when using vertical gel electrophoresis and Chrom & Spec software. Both the well-studied model protein molecules (bovine serum albumin) and more complex real-world protein-based products (casein-containing isolate for sports nutrition), which were subjected to mechanical activation in a planetary ball mill to obtain samples characterized by different protein denaturation degrees, were used as study objects. Protein quantification in the mechanically activated samples was carried out. The degree of destruction of individual protein was shown to be higher compared to that of the protein-containing mixture after mechanical treatment for an identical amount of time. The methodological approach used in this study can serve as guidance for other researchers who would like to use electrophoresis for protein quantification both in individual form and in protein mixtures. The findings prove that photographic imaging of gels followed by mathematical data processing can be applied for analyzing the electrophoretic data as an affordable, convenient and quick tool.

7.
Molecules ; 25(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207746

RESUMO

In recent years, we have witnessed an increasing interest in the application of mechanochemical methods for processing materials in biomass refining techniques. Grinding and mechanical pretreatment are very popular methods utilized to enhance the reactivity of polymers and plant raw materials; however, the choice of devices and their modes of action is often performed through trial and error. An inadequate choice of equipment often results in inefficient grinding, low reactivity of the product, excess energy expenditure, and significant wear of the equipment. In the present review, modern equipment employing various types of mechanical impacts, which show the highest promise for mechanochemical pretreatment of plant raw materials, is examined and compared-disc mills, attritors and bead mills, ball mills, planetary mills, vibration and vibrocentrifugal mills, roller and centrifugal roller mills, extruders, hammer mills, knife mills, pin mills, disintegrators, and jet mills. The properly chosen type of mechanochemical activation (and equipment) allows an energetically and economically sound enhancement of the reactivity of solid-phase polymers by increasing the effective surface area accessible to reagents, reducing the amount of crystalline regions and the diffusion coefficient, disordering the supramolecular structure of the material, and mechanochemically reacting with the target substances.


Assuntos
Biotecnologia/métodos , Fenômenos Mecânicos , Vibração
8.
Polymers (Basel) ; 12(3)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178224

RESUMO

This paper examines the effect of mechanical activation on the amorphization of starch having different types of crystalline structure (A-type corn starch; B-type potato starch; and C-type tapioca starch). Structural properties of the starches were studied by X-ray diffraction analysis. Mechanical activation in a planetary ball mill reduces the degree of crystallinity in proportion to pretreatment duration. C-type tapioca starch was found to have the highest degree of crystallinity. Energy consumed to achieve complete amorphization of the starches having different types of crystalline structure was measured. The kinetic parameters of the process (the effective rate constants) were determined. The rate constant and the strongest decline in the crystallinity degree after mechanical activation change in the following series: C-type starch, A-type starch, and B-type starch.

9.
Molecules ; 25(4)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102256

RESUMO

The cooperative thermomechanical properties of plant-derived polymers have been studied insufficiently, although this feedstock has a very high potential. In the present paper, we analyzed the changes in the structure and physicochemical properties of lignin-rich biomass induced by thermomechanical pretreatment. Low-temperature treatment allows one to retain the original supramolecular structure of the cell walls, while an appreciably high disintegration degree is reached. This increases the reactivity of the material in the subsequent heterogeneous reactions. Mechanical pretreatment at medium temperatures (10 °C), when almost all cell wall polymers except for low-molecular-weight lignin are in the glassy state, enhances the mobility of cell wall polymers and causes sufficient cellulose disordering, while the specific surface area is not significantly increased. High-temperature pretreatment of reed biomass is accompanied by pore formation and lignin release from the cell wall structure, which opens up new prospects for using this biomass as a matrix to produce core-shell-structured sorbents of heavy metals. The energy consumed by mechanochemical equipment for the activation of reed biomass was determined.


Assuntos
Lignina/química , Poaceae/química , Biomassa , Fenômenos Biomecânicos , Parede Celular/química , Temperatura
10.
RSC Adv ; 10(36): 21108-21114, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35518752

RESUMO

Mechanochemical activation of coal is commonly employed in industry. However, even the simplest solid-phase reactions, such as neutralization of humic acids in brown coal, remain insufficiently studied. The hypothesis regarding the occurrence of mechanochemical neutralization under local hydrothermal conditions for humic acids in brown coal has been tested in this study. 3D modelling of the "block-interlayer" system (where coal particles are separated by air interlayers saturated with water vapor) was used. The 3D model showed that the permittivity is expected to rise from 14 to 16% as the moisture content in the system increases from 12 to 15%. The actual permittivities of coal with different moisture contents have been measured by dielectric spectroscopy. In the real system, the permittivity increases more than threefold as the moisture content rises from 12 to 15%. This increase is much greater than the calculated one, demonstrating that the phase containing unbound water appears in the system at a moisture content of ∼12-13% and may exert various effects on the solid-phase reaction. There is a correlation between the moisture content, permittivity, and predominant mechanisms of the reaction between the organic matter in brown coal and sodium percarbonate (a reagent simultaneously containing the alkaline and peroxidic components). The reactions between brown coal and alkaline reagents proceed under local hydrothermal conditions. Both the alkaline and peroxidic components of sodium percarbonate participate in the solid-phase reaction between brown coal and sodium percarbonate. The emergence of unbound water in coal significantly inhibits the oxidation reaction.

11.
Polymers (Basel) ; 11(7)2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323787

RESUMO

As a heterogeneous process, enzymatic hydrolysis depends on the contact area between enzymes and the cellulose substrate. The surface area of a substrate is typically evaluated through the sorption of gases (nitrogen, argon, or water vapor) or sorption of high-molecular-weight pigments or proteins. However, lignocellulosic biomass uninvolved in the reaction because of inefficient binding or even the complete inhibition of the enzymes on the surface consisting of lignin or inorganic compounds is erroneously taken into account under these conditions. The initial rate of enzymatic hydrolysis will directly depend on the number of enzymes efficiently sorbed onto cellulose. In this study, the sorption of cellulolytic enzymes was used to evaluate the surface accessibility of the cellulose substrate and its changes during mechanical pretreatment. It was demonstrated that for pure cellulose, mechanical activation did not alter the chemical composition of the surface and the initial rate of hydrolysis increased, which was inconsistent with the data on the thermal desorption of nitrogen. New active cellulose sorption sites were shown to be formed upon. the mechanical activation of plant biomass (wheat straw), and the ultimate initial rate of hydrolysis corresponding to saturation of the accessible surface area with enzyme molecules was determined.

12.
Biotechnol Bioeng ; 116(5): 1231-1244, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659596

RESUMO

At present, "mechanochemistry" is synonymous with "grinding," according to the views of a significant number of scientists and technologists. Often, one comes across the opinion that "the less the particle size, the better." The cases of considering chemical reactions occurring during pretreatment, as well as considering changes in the ultrastructure of cell walls are extremely rare. Also, the wrong choice of the type of mechanical impact and the equipment used in most cases leads to excessive consumption of electrical energy and reduce economic efficiency. The review presents the currently available published data on mechanically activated processes for the pretreatment of plant materials and shows that when using mechanical treatment, it is necessary to look more closely at the phenomena occurring, rather than reducing everything to the production of fine and ultrafine powders. As a result of mechanical action, active surface radicals can form, hydrothermal chemical processes can occur, and mechanocomposites can form. The role of interphase processes, changes in surface chemistry, related dimensional effects, and the disordering of the crystal structure and amorphization should be taken into account. In addition, the physicochemical insights in mechanical pretreatment make it possible to more efficiently use the energy delivered to the material, and, consequently, increase the economic efficiency of the activation process.


Assuntos
Biomassa , Parede Celular/química , Lignina/química , Plantas/química , Hidrólise
13.
Nanoscale Res Lett ; 6: 512, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21871070

RESUMO

We have studied the phase and structure evolution of the Ti33Cu67 amorphous alloy subjected to electrical pulses of high current density. By varying the pulse parameters, different stages of crystallization could be observed in the samples. Partial polymorphic nanocrystallization resulting in the formation of 5- to 8-nm crystallites of the TiCu2 intermetallic in the residual amorphous matrix occurred when the maximum current density reached 9.7·108 A m-2 and the pulse duration was 140 µs, though the calculated temperature increase due to Joule heating was not enough to reach the crystallization temperature of the alloy. Samples subjected to higher current densities and higher values of the evolved Joule heat per unit mass fully crystallized and contained the Ti2Cu3 and TiCu3 phases. A common feature of the crystallized ribbons was their non-uniform microstructure with regions that experienced local melting and rapid solidification.PACS: 81; 81.05.Bx; 81.05.Kf.

14.
Appl Biochem Biotechnol ; 162(7): 2008-14, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20429042

RESUMO

A new method of obtaining biologically active mannanoligosaccharides is proposed. It involves mechanical activation of the enzymatic hydrolysis of components forming the supramolecular structure of the cell wall. Processes that take place during mechanical treatment and enzymatic hydrolysis of yeast biomass and lead to an increase in the availability of mannanoligosaccharides of the yeast cell walls are investigated. The efficiency of the use of mechanoenzymatic approach to obtaining mannanoligosaccharide preparations is evaluated.


Assuntos
Celulases/química , Proteínas Fúngicas/química , Microbiologia Industrial/métodos , Mananas/química , Oligossacarídeos/química , Saccharomyces cerevisiae/química , Biomassa , Parede Celular/química , Parede Celular/metabolismo , Hidrólise , Mananas/isolamento & purificação , Mananas/metabolismo , Manose/análise , Manose/isolamento & purificação , Manose/metabolismo , Oligossacarídeos/isolamento & purificação , Oligossacarídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Trichoderma/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA