Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 34(9): 1898-1907, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37102735

RESUMO

Posttranslational modifications (PTMs) play vital roles in cellular homeostasis and are implicated in various pathological conditions. This work uses two ion mobility spectrometry-mass spectrometry (IMS-MS) modalities, drift-tube IMS (DT-IMS) and trapped IMS (TIMS), to characterize three important nonenzymatic PTMs that induce no mass loss: l/d isomerization, aspartate/isoaspartate isomerization, and cis/trans proline isomerization. These PTMs are assessed in a single peptide system, the recently discovered pleurin peptides, Plrn2, from Aplysia californica. We determine that the DT-IMS-MS/MS can capture and locate asparagine deamidation into aspartate and its subsequent isomerization to isoaspartate, a key biomarker for age-related diseases. Additionally, nonenzymatic peptide cleavage via in-source fragmentation is evaluated for differences in the intensities and patterns of fragment peaks between these PTMs. Peptide fragments resulting from in-source fragmentation, preceded by peptide denaturation by liquid chromatography (LC) mobile phase, exhibited cis/trans proline isomerization. Finally, the effects of differing the fragmentation voltage at the source and solution-based denaturation conditions on in-source fragmentation profiles are evaluated, confirming that LC denaturation and in-source fragmentation profoundly impact N-terminal peptide bond cleavages of Plrn2 and the structures of their fragment ions. With that, LC-IMS-MS/MS coupled with in-source fragmentation could be a robust method to identify three important posttranslational modifications: l/d isomerization, Asn-deamidation leading to Asp/IsoAsp isomerization, and cis/trans proline isomerization.


Assuntos
Ácido Aspártico , Ácido Isoaspártico , Sequência de Aminoácidos , Ácido Aspártico/química , Espectrometria de Massas em Tandem , Peptídeos/química , Prolina , Isomerismo
2.
J Proteome Res ; 22(1): 235-245, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36412564

RESUMO

We combine liquid chromatography coupled with ion mobility spectrometry-mass spectrometry to elucidate how short exposure to corticosterone (Cort) alters the output of mouse pancreatic islet hormones. The workflow enables the robust separation of mouse insulin 1 (Ins1) and insulin 2 (Ins2) and the detection of major islet hormones in a homogenate equivalent to 100-150 islet cells. We show that Ins2 has a unique structure and is degraded much faster than Ins1. Further investigation indicates that Ins2 may populate both T and R states, whereas Ins1 may not. The assemblies of Ins1's B-chain also introduce more structural heterogeneity than Ins2. Collectively, these features account for their unique degradation profiles, the diabetes risk associated with Ins1, and the protective effect of Ins2. In the same experiments, we observe that the ratio of amylin to Ins1 increased significantly in Cort-treated mice (15:1) compared to the control mice (42:1), correlating well with ß-cell proliferation observed in immunoassays on the same animal model. We observe no increase in intact full-length insulin levels but more of the truncated forms, indicating that enzymatic activity is accelerated. Our data provide a molecular basis for reduced insulin action induced by Cort and connections between insulin turnover and insulin resistance.


Assuntos
Resistência à Insulina , Células Secretoras de Insulina , Camundongos , Animais , Corticosterona/farmacologia , Corticosterona/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA