Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 192(4): 2838-2854, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37204807

RESUMO

Somatic embryogenesis (SE) is a key regeneration pathway in various biotechnology approaches to crop improvement, especially for economically important perennial woody crops like citrus. However, maintenance of SE capability has long been a challenge and becomes a bottleneck in biotechnology-facilitated plant improvement. In the embryogenic callus (EC) of citrus, we identified 2 csi-miR171c-targeted SCARECROW-LIKE genes CsSCL2 and CsSCL3 (CsSCL2/3), which exert positive feedback regulation on csi-miR171c expression. Suppression of CsSCL2 expression by RNA interference (RNAi) enhanced SE in citrus callus. A thioredoxin superfamily protein CsClot was identified as an interactive protein of CsSCL2/3. Overexpression of CsClot disturbed reactive oxygen species (ROS) homeostasis in EC and enhanced SE. Chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA-Seq identified 660 genes directly suppressed by CsSCL2 that were enriched in biological processes including development-related processes, auxin signaling pathway, and cell wall organization. CsSCL2/3 bound to the promoters of regeneration-related genes, such as WUSCHEL-RELATED HOMEOBOX 2 (CsWOX2), CsWOX13, and Lateral Organ Boundaries Domain 40 (LBD40), and repressed their expression. Overall, CsSCL2/3 modulate ROS homeostasis through the interactive protein CsClot and directly suppress the expression of regeneration-related genes, thus regulating SE in citrus. We uncovered a regulatory pathway of miR171c-targeted CsSCL2/3 in SE, which shed light on the mechanism of SE and regeneration capability maintenance in citrus.


Assuntos
Citrus , Citrus/genética , Citrus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Biotecnologia , RNA-Seq , Regeneração , Técnicas de Embriogênese Somática de Plantas , Regulação da Expressão Gênica de Plantas
2.
J Exp Bot ; 73(18): 6170-6185, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35661206

RESUMO

Somatic embryogenesis (SE) is a major regeneration approach for in vitro cultured tissues of plants, including citrus. However, SE capability is difficult to maintain, and recalcitrance to SE has become a major obstacle to plant biotechnology. We previously reported that miR156-SPL modules regulate SE in citrus callus. However, the downstream regulatory pathway of the miR156-SPL module in SE remains unclear. In this study, we found that transcription factors CsAGL15 and CsFUS3 bind to the CsMIR156A promoter and activate its expression. Suppression of csi-miR156a function leads to up-regulation of four target genes, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (CsSPL) genes, and reduction of SE efficiency. In the short tandem target mimic (STTM)-miR156a overexpression callus (MIM156), the number of amyloplasts and starch content were significantly reduced, and genes involved in starch synthesis and transport were down-regulated. csi-miR172d was down-regulated, whereas the target genes, CsTOE1.1 and CsTOE1.2, which inhibit the expression of starch biosynthesis genes, were up-regulated. In our working model, CsAGL15 and CsFUS3 activate csi-miR156a, which represses CsSPLs and further regulates csi-miR172d and CsTOEs, thus altering starch accumulation in callus cells and regulating SE in citrus. This study elucidates the pathway of miR156-SPLs and miR172-TOEs-mediated regulation of SE, and provides new insights into enhancing SE capability in citrus.


Assuntos
Citrus , MicroRNAs , Regulação da Expressão Gênica de Plantas , Citrus/genética , Citrus/metabolismo , Amido/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Desenvolvimento Embrionário
3.
Plant Cell Rep ; 41(6): 1403-1415, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35381869

RESUMO

KEY MESSAGE: Overexpression of miR171 restored SE competence in the recalcitrant citrus callus, and inhibition of miR171 function weakened SE competence in the strongly embryogenic citrus callus. Somatic embryogenesis (SE) is an important way of in vitro regeneration for plants. For perennial woody crops such as citrus, embryogenic callus is usually induced from unfertilized aborted ovules and widely used in biotechnology aided breeding. However, SE capacity always declines in callus during subculture, which makes regeneration difficult and hinders the application of biotechnology. We previously found that miR171 may be a regulator of SE in citrus, based on the abundant expression of csi-miR171c in the embryogenic callus and during SE of citrus. Here, we report that miR171 promotes SE and is required for SE in citrus. Overexpression of miR171 restored SE competence in the recalcitrant callus of 'Guoqing No.1' Satsuma mandarin (G1), whereas inhibition of miR171 function by Short Tandem Target Mimic (STTM) weakened SE competence in the strongly embryogenic callus of 'Valencia' sweet orange (V). The comparative transcriptomic analysis in miR171 overexpressed callus line (OE) and the wild type callus (WT) indicated that overexpression of miR171 decreased the expression level of its SCARECROW-LIKE (CsSCL) targets, and activated stress response related biological processes and metabolic processes that are required for cell differentiation. However, CsSCLs were up-regulated in the OE callus during SE induction process, which activated the cell division and developmental processes that are required for embryogenesis progress. Our results validate the function of miR171 in regulation of SE and reveal the biological responses provoked by miR171 in citrus that may promote SE.


Assuntos
Citrus sinensis , Citrus , Citrus/genética , Citrus sinensis/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal
4.
Plant Sci ; 277: 121-131, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30466577

RESUMO

In citrus, genetic improvement via biotechnology is challenging due to insufficient understanding of molecular barriers that prevent regeneration by somatic embryogenesis (SE). Our previous study indicated that LEC genes were involved in SE in citrus, but their regulatory roles remain to be elucidated. Here, we cloned one of the LEC genes, CsFUS3, and show that it is preferentially expressed during SE and in the embryogenic callus (EC) derived from citrus varieties with strong embryogenic competence. The overexpression of CsFUS3 in recalcitrant citrus callus restored embryogenic competence. Complementation of the loss-of-function Arabidopsis fus3 mutant with the CsFUS3 gene restored normal late embryogenesis, which is consistent with the CsFUS3 and AtFUS3 proteins contributing to the same regulatory network in Arabidopsis. Transcriptome profiling revealed that the expression of particular TFs that promote SE was up-regulated in the citrus overexpression (OE) line. The 104 differentially expressed genes associated with hormone biosynthesis, catabolism, and signaling are particularly noteworthy. The dynamic change in the ratio of ABA to GA during SE in wild-type callus mirrored the expression pattern of CsFUS3. In contrast, in the OE line, the ratio of ABA to GA was higher and the capacity for SE was greater when the OE line was separately treated with ABA and GA biosynthesis inhibitors. Taken together, our results demonstrate that the overexpression of CsFUS3 appears to establish a cellular environment favorable to SE, at least in part by promoting a high ABA to GA ratio and by regulating the expression of TFs that promote SE.


Assuntos
Citrus/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Citrus/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Técnicas de Embriogênese Somática de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia
6.
J Exp Bot ; 69(12): 2979-2993, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29659948

RESUMO

miR156 is a highly conserved plant miRNA and has been extensively studied because of its versatile roles in plant development. Here, we report a novel role of miR156 in regulating somatic embryogenesis (SE) in citrus, one of the most widely cultivated fruit crops in the world. SE is an important means of in vitro regeneration, but over the course of long-term sub-culturing there is always a decline in the SE potential of the preserved citrus embryogenic callus, and this represents a key obstacle for citrus biotechnology. In this study, the SE competence of citrus callus of wild kumquat (Fortunella hindsii) was significantly enhanced by either overexpression of csi-miR156a or by individual knock-down of the two target genes, CsSPL3 and CsSPL14, indicating that the effect of miR156-SPL modules was established during the initial phases of SE induction. Biological processes that might promote SE in response to miR156 overexpression were explored using RNA-seq, and mainly included hormone signaling pathways, stress responses, DNA methylation, and the cell cycle. CsAKIN10 was identified as interacting protein of CsSPL14. Our results provide insights into the regulatory pathway through which miR156-SPL modules enhance the SE potential of citrus callus, and provide a theoretical basis for improvement of plant SE competence.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Técnicas de Embriogênese Somática de Plantas , Rutaceae/embriologia , MicroRNAs/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
J Exp Bot ; 67(19): 5743-5756, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27619233

RESUMO

Nucellar embryony (NE) is an adventitious form of apomixis common in citrus, wherein asexual embryos initiate directly from nucellar cells surrounding the embryo sac. NE enables the fixation of desirable agronomic traits and the production of clonal offspring of virus-free rootstock, but impedes progress in hybrid breeding. In spite of the great importance of NE in citrus breeding and commercial production, little is understood about the underlying molecular mechanisms. In this study, the stages of nucellar embryo initiation (NEI) were determined for two polyembryonic citrus cultivars via histological observation. To explore the genes and regulatory pathways involved in NEI, we performed mRNA-seq and sRNA-seq analyses of ovules immediately prior to and at stages during NEI in the two pairs of cultivars. A total of 305 differentially expressed genes (DEGs) were identified between the poly- and monoembryonic ovules. Gene ontology (GO) analysis revealed that several processes are significantly enriched based on DEGs. In particular, response to stress, and especially response to oxidative stress, was over-represented in polyembryonic ovules. Nearly 150 miRNAs, comprising ~90 conserved and ~60 novel miRNAs, were identified in the ovules of either cultivar pair. Only two differentially expressed miRNAs (DEMs) were identified, of which the novel miRN23-5p was repressed whereas the targets accumulated in the polyembryonic ovules. This integrated study on the transcriptional and post-transcriptional regulatory profiles between poly- and monoembryonic citrus ovules provides new insights into the mechanism of NE, which should contribute to revealing the regulatory mechanisms of plant apomixis.


Assuntos
Apomixia/genética , Citrus/genética , MicroRNAs/genética , RNA Mensageiro/genética , Transcriptoma/genética , Citrus/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , MicroRNAs/fisiologia , Óvulo Vegetal/genética , Óvulo Vegetal/fisiologia , Estresse Oxidativo , RNA Mensageiro/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Sementes/genética , Sementes/fisiologia , Análise de Sequência de RNA
8.
BMC Plant Biol ; 15: 89, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25848687

RESUMO

BACKGROUND: Polyploidy has often been considered to confer plants a better adaptation to environmental stresses. Tetraploid citrus rootstocks are expected to have stronger stress tolerance than diploid. Plenty of doubled diploid citrus plants were exploited from diploid species for citrus rootstock improvement. However, limited metabolic and molecular information related to tetraploidization is currently available at a systemic biological level. This study aimed to evaluate the occurrence and extent of metabolic and transcriptional changes induced by tetraploidization in Ziyang xiangcheng (Citrus junos Sieb. ex Tanaka), which is a special citrus germplasm native to China and widely used as an iron deficiency tolerant citrus rootstock. RESULTS: Doubled diploid Ziyang xiangcheng has typical morphological and anatomical features such as shorter plant height, larger and thicker leaves, bigger stomata and lower stomatal density, compared to its diploid parent. GC-MS (Gas chromatography coupled to mass spectrometry) analysis revealed that tetraploidization has an activation effect on the accumulation of primary metabolites in leaves; many stress-related metabolites such as sucrose, proline and γ-aminobutyric acid (GABA) was remarkably up-regulated in doubled diploid. However, LC-QTOF-MS (Liquid chromatography quadrupole time-of-flight mass spectrometry) analysis demonstrated that tetraploidization has an inhibition effect on the accumulation of secondary metabolites in leaves; all the 33 flavones were down-regulated while all the 6 flavanones were up-regulated in 4x. By RNA-seq analysis, only 212 genes (0.8% of detected genes) are found significantly differentially expressed between 2x and 4x leaves. Notably, those genes were highly related to stress-response functions, including responses to salt stress, water and abscisic acid. Interestingly, the transcriptional divergence could not explain the metabolic changes, probably due to post-transcriptional regulation. CONCLUSION: Taken together, tetraploidization induced considerable changes in leaf primary and secondary metabolite accumulation in Ziyang xiangcheng. However, the effect of tetraploidization on transcriptome is limited. Compared to diploid, higher expression level of stress related genes and higher content of stress related metabolites in doubled diploid could be beneficial for its stress tolerance.


Assuntos
Citrus/genética , Citrus/metabolismo , Diploide , Metaboloma/genética , Estresse Fisiológico/genética , Transcrição Gênica , Cromatografia Líquida , Cruzamentos Genéticos , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Metabolômica , Folhas de Planta/metabolismo , Análise de Componente Principal , Metabolismo Secundário , Tetraploidia , Transcriptoma/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA