Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adipocyte ; 13(1): 2365211, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38858810

RESUMO

microRNAs (miRNAs), a subclass of noncoding short RNAs, direct cells fate decisions that are important for cell proliferation and cell lineage decisions. Adipogenic differentiation contributes greatly to the development of white adipose tissue, involving of highly organized regulation by miRNAs. In the present study, we screened and identified 78 differently expressed miRNAs of porcine BMSCs during adipogenic differentiation. Of which, the role of miR-29c in regulating the proliferation and adipogenic differentiation was proved and detailed. Specifically, over-expression miR-29c inhibits the proliferation and adipogenic differentiation of BMSCs, which were reversed upon miR-29c inhibitor. Interference of IGF1 inhibits the proliferation and adipogenic differentiation of BMSCs. Mechanistically, miR-29c regulates the proliferation and adipogenic differentiation of BMSCs by targeting IGF1 and further regulating the MAPK pathway and the PI3K-AKT-mTOR pathway, respectively. In conclusion, we highlight the important role of miR-29c in regulating proliferation and adipogenic differentiation of BMSCs.


Assuntos
Adipogenia , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais , MicroRNAs , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , MicroRNAs/metabolismo , Suínos , Adipogenia/genética , Células Cultivadas , Transdução de Sinais , Adipócitos/citologia , Adipócitos/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo
2.
Front Microbiol ; 15: 1398631, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933022

RESUMO

Commensal microbial-host interaction is crucial for host metabolism, growth, development, and immunity. However, research on microbial-host immunity in large animal models has been limited. This study was conducted to investigate the effects of the commensal microbiota on immune function in two model groups: germ-free (GF) and specific-pathogen-free (SPF) piglets. The weight and organ index of the spleen of the GF piglet were larger than those in the SPF piglet (P < 0.05). The histological structure of the red pulp area and mean area of germinal centers were larger in the SPF piglet than in the GF piglet (P < 0.05), whereas the areas of staining of B cells and T cells in the spleen and mesenteric lymph nodes (MLNs) were lower in the GF piglet (P < 0.05). We identified immune-related genes in the spleen and MLNs using RNA sequencing, and used real-time quantitative PCR to analyze the expression of core genes identified in gene set enrichment analysis. The expression levels of genes in the transforming growth factor-ß/SMAD3 signaling pathway, Toll-like receptor 2/MyD88/nuclear factor-κB signaling pathway, and pro-inflammatory factor genes IL-6 and TNF-α in the spleen and MLNs were higher in the SPF piglet and in splenic lymphocytes compared with those in the GF and control group, respectively, under treatment with acetic acid, propionic acid, butyric acid, lipopolysaccharide (LPS), or concanavalin A (ConA). The abundances of plasma cells, CD8++ T cells, follicular helper T cells, and resting natural killer cells in the spleen and MLNs were significantly greater in the SPF piglet than in the GF piglet (P < 0.05). In conclusion, the commensal microbiota influenced the immune tissue structure, abundances of immune cells, and expression of immune-related pathways, indicating the importance of the commensal microbiota for spleen and MLNs development and function. In our study, GF piglet was used as the research model, eliminating the interference of microbiota in the experiment, and providing a suitable and efficient large animal research model for exploring the mechanism of "microbial-host" interactions.

3.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791168

RESUMO

The normal growth and development of skeletal muscle is essential for the health of the body. The regulation of skeletal muscle by intestinal microorganisms and their metabolites has been continuously demonstrated. Acetate is the predominant short-chain fatty acids synthesized by gut microbiota through the fermentation of dietary fiber; however, the underlying molecular mechanisms governing the interaction between acetate and skeletal muscle during the rapid growth stage remains to be further elucidated. Herein, specific pathogen-free (SPF) mice, germ-free (GF) mice, and germ-free mice supplemented with sodium acetate (GS) were used to evaluate the effects of acetate on the skeletal muscle growth and development of young mice with gut microbiota deficiency. We found that the concentration of serum acetate, body mass gain, succinate dehydrogenase activity, and expression of the myogenesis maker gene of skeletal muscle in the GS group were higher than those in the GF group, following sodium acetate supplementation. Furthermore, the transcriptome analysis revealed that acetate activated the biological processes that regulate skeletal muscle growth and development in the GF group, which are otherwise inhibited due to a gut microbiota deficiency. The in vitro experiment showed that acetate up-regulated Gm16062 to promote skeletal muscle cell differentiation. Overall, our findings proved that acetate promotes skeletal muscle growth and development in young mice via increasing Gm16062 expression.


Assuntos
Microbioma Gastrointestinal , Desenvolvimento Muscular , Músculo Esquelético , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Acetatos/farmacologia , Acetatos/metabolismo , Masculino , Acetato de Sódio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL
4.
Front Microbiol ; 15: 1402807, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800748

RESUMO

Pigs are widely used as animal models in various studies related to humans. The interaction between the gut microbiota and the host has significant effects on the host's health and disease status. However, although there have been many studies investigating the pig gut microbiota, the findings have been inconsistent due to variations in rearing conditions. Interactions between the gut microbiota and host have not been fully explored in pigs. Specific pathogen-free (SPF) pigs are ideal non-primate large animals to study the interactions between the gut microbiota and the host. In this study, we performed high-throughput sequencing analysis of the gut microbiota and the gut tissue transcriptome of six SPF pigs to provide a systematic understanding of the composition, function, and spatial distribution of gut microbiota in SPF pigs. We identified significant differences in microbial diversity and functionality among different gastrointestinal tract sites. Metagenomics data analysis revealed significant differences in alpha diversity and beta diversity of microbiota in different gastrointestinal sites of SPF pigs. Additionally, transcriptomic data indicated significant differences in gene expression as well as KEGG and GO functional enrichment between the small intestine and large intestine. Furthermore, by combining microbial metagenomics and host transcriptomics analyses, specific correlations were found between gut microbiota and host genes. These included a negative correlation between the TCN1 gene and Prevotella dentalis, possibly related to bacterial metabolic pathways involving vitamin B12, and a positive correlation between the BDH1 gene and Roseburia hominis, possibly because both are involved in fatty acid metabolism. These findings lay the groundwork for further exploration of the co-evolution between the microbiota and the host, specifically in relation to nutrition, metabolism, and immunity. In conclusion, we have elucidated the diversity of the gut microbiota in SPF pigs and conducted a detailed investigation into the interactions between the gut microbiota and host gene expression. These results contribute to our understanding of the intricate dynamics between the gut microbiota and the host, offering important references for advancements in life science research, bioproduct production, and sustainable development in animal husbandry.

5.
Poult Sci ; 103(6): 103742, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670056

RESUMO

Unlike other poultry, parent pigeons produce "pigeon milk" in their crops to nurture their squabs, which is mainly controlled by prolactin (PRL). Exception for PRL, the pituitary gland may also release various other peptide and protein hormones. However, whether these hormones change during pigeon crop lactation and their potential physiological functions remain unclear. Here, to identify potential peptide or protein hormone genes that regulate crop lactation, we conducted transcriptome analysis of pigeon pituitary glands at 3 different breeding stages (the ceased stage-nonincubation and non-nurturing stage, the 11th d of the incubation, and the 1st d of the nurturing stage) using RNA sequencing (RNA-Seq). Our analysis identified a total of 15,191 mRNAs and screened out 297 differentially expressed genes (DEG), including PRL, VIP, etc. The expression abundance of PRL mRNA on the 1st d of the nurturing stage was respectively 4.93 and 3.62 folds higher when compared to the ceased stage and the 11th d of the incubation stage. Additionally, the expression abundance of VIP is higher in the 1st d of the nurturing stage than in the ceased stage. Protein-protein interaction (PPI) network and Molecular Complex Detection (MCODE) analysis identified several vital DEGs (e.g., GHRHR, VIP, etc.), being closely linked with hormone and enriched in neuropeptide signaling pathway and response to the hormone. Expression pattern analysis revealed that these DEGs exhibited 4 distinct expression patterns (profile 10, 16, 18, 19). Genes in profile 10 and 19 presented a trend with the highest expression level on 1st d of the nurturing stage, and functional enrichment analysis indicated that these genes are involved in neuropeptide hormone activity, receptor-ligand activity, and the extracellular matrix, etc. Taken together, being consistent with PRL, some genes encoding peptide and protein hormones (e.g., VIP) presented differentially expressed in different breeding stages. It suggests that these hormones may be involved in regulation of the crop lactation process or corresponding behavior in domestic pigeons. The results of this study help to gain new insights into the role of pituitary gland in regulating pigeon lactation.


Assuntos
Columbidae , Perfilação da Expressão Gênica , Hipófise , Animais , Columbidae/genética , Columbidae/fisiologia , Columbidae/metabolismo , Hipófise/metabolismo , Perfilação da Expressão Gênica/veterinária , Feminino , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Transcriptoma , Lactação/genética , Prolactina/genética , Prolactina/metabolismo
6.
Genome Res ; 34(2): 310-325, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479837

RESUMO

In diploid mammals, allele-specific three-dimensional (3D) genome architecture may lead to imbalanced gene expression. Through ultradeep in situ Hi-C sequencing of three representative somatic tissues (liver, skeletal muscle, and brain) from hybrid pigs generated by reciprocal crosses of phenotypically and physiologically divergent Berkshire and Tibetan pigs, we uncover extensive chromatin reorganization between homologous chromosomes across multiple scales. Haplotype-based interrogation of multi-omic data revealed the tissue dependence of 3D chromatin conformation, suggesting that parent-of-origin-specific conformation may drive gene imprinting. We quantify the effects of genetic variations and histone modifications on allelic differences of long-range promoter-enhancer contacts, which likely contribute to the phenotypic differences between the parental pig breeds. We also observe the fine structure of somatically paired homologous chromosomes in the pig genome, which has a functional implication genome-wide. This work illustrates how allele-specific chromatin architecture facilitates concomitant shifts in allele-biased gene expression, as well as the possible consequential phenotypic changes in mammals.


Assuntos
Cromatina , Cromossomos , Animais , Suínos/genética , Cromatina/genética , Haplótipos , Cromossomos/genética , Genoma , Mamíferos/genética
7.
Cell Prolif ; 57(3): e13552, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37905345

RESUMO

Cebpa is a master transcription factor gene for adipogenesis. However, the mechanisms of enhancer-promoter chromatin interactions controlling Cebpa transcriptional regulation during adipogenic differentiation remain largely unknown. To reveal how the three-dimensional structure of Cebpa changes during adipogenesis, we generated high-resolution chromatin interactions of Cebpa in 3T3-L1 preadipocytes and 3T3-L1 adipocytes using circularized chromosome conformation capture sequencing (4C-seq). We revealed dramatic changes in chromatin interactions and chromatin status at interaction sites during adipogenic differentiation. Based on this, we identified five active enhancers of Cebpa in 3T3-L1 adipocytes through epigenomic data and luciferase reporter assays. Next, epigenetic repression of Cebpa-L1-AD-En2 or -En3 by the dCas9-KRAB system significantly down-regulated Cebpa expression and inhibited adipocyte differentiation. Furthermore, experimental depletion of cohesin decreased the interaction intensity between Cebpa-L1-AD-En2 and the Cebpa promoter and down-regulated Cebpa expression, indicating that long-range chromatin loop formation was mediated by cohesin. Two transcription factors, RXRA and PPARG, synergistically regulate the activity of Cebpa-L1-AD-En2. To test whether Cebpa-L1-AD-En2 plays a role in adipose tissue development, we injected dCas9-KRAB-En2 lentivirus into the inguinal white adipose tissue (iWAT) of mice to suppress the activity of Cebpa-L1-AD-En2. Repression of Cebpa-L1-AD-En2 significantly decreased Cebpa expression and adipocyte size, altered iWAT transcriptome, and affected iWAT development. We identified functional enhancers regulating Cebpa expression and clarified the crucial roles of Cebpa-L1-AD-En2 and Cebpa promoter interaction in adipocyte differentiation and adipose tissue development.


Assuntos
Adipogenia , Cromatina , Animais , Camundongos , Adipócitos , Adipogenia/genética , Tecido Adiposo , Diferenciação Celular
8.
PLoS Genet ; 19(6): e1010746, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37289658

RESUMO

Pigeons (Columba livia) are among a select few avian species that have developed a specialized reproductive mode wherein the parents produce a 'milk' in their crop to feed newborn squabs. Nonetheless, the transcriptomic dynamics and role in the rapid transition of core crop functions during 'lactation' remain largely unexplored. Here, we generated a de novo pigeon genome assembly to construct a high resolution spatio-temporal transcriptomic landscape of the crop epithelium across the entire breeding stage. This multi-omics analysis identified a set of 'lactation'-related genes involved in lipid and protein metabolism, which contribute to the rapid functional transitions in the crop. Analysis of in situ high-throughput chromatin conformation capture (Hi-C) sequencing revealed extensive reorganization of promoter-enhancer interactions linked to the dynamic expression of these 'lactation'-related genes between stages. Moreover, their expression is spatially localized in specific epithelial layers, and can be correlated with phenotypic changes in the crop. These results illustrate the preferential de novo synthesis of 'milk' lipids and proteins in the crop, and provides candidate enhancer loci for further investigation of the regulatory elements controlling pigeon 'lactation'.


Assuntos
Columbidae , Transcriptoma , Animais , Feminino , Transcriptoma/genética , Columbidae/genética , Columbidae/metabolismo , Perfilação da Expressão Gênica , Leite , Lactação
9.
Nat Commun ; 14(1): 3457, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308492

RESUMO

Using an adult female miniature pig model with diet-induced weight gain/weight loss, we investigated the regulatory mechanisms of three-dimensional (3D) genome architecture in adipose tissues (ATs) associated with obesity. We generated 249 high-resolution in situ Hi-C chromatin contact maps of subcutaneous AT and three visceral ATs, analyzing transcriptomic and chromatin architectural changes under different nutritional treatments. We find that chromatin architecture remodeling underpins transcriptomic divergence in ATs, potentially linked to metabolic risks in obesity development. Analysis of chromatin architecture among subcutaneous ATs of different mammals suggests the presence of transcriptional regulatory divergence that could explain phenotypic, physiological, and functional differences in ATs. Regulatory element conservation analysis in pigs and humans reveals similarities in the regulatory circuitry of genes responsible for the obesity phenotype and identified non-conserved elements in species-specific gene sets that underpin AT specialization. This work provides a data-rich tool for discovering obesity-related regulatory elements in humans and pigs.


Assuntos
Cromatina , Aumento de Peso , Adulto , Humanos , Feminino , Suínos , Animais , Obesidade , Tecido Adiposo , Montagem e Desmontagem da Cromatina , Redução de Peso , Mamíferos
10.
FASEB J ; 37(6): e22993, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37235502

RESUMO

Lacking PTRF (polymerase I and transcript release factor), an essential caveolae component, causes a secondary deficiency of caveolins resulting in muscular dystrophy. The transcriptome responses of different types of muscle fibers and mononuclear cells in skeletal muscle to muscular dystrophy caused by Ptrf deletion have not been explored. Here, we created muscular dystrophy mice by Ptrf knockout and applied single-nucleus RNA sequencing (snRNA-seq) to unveil the transcriptional changes of the skeletal muscle at single-nucleus resolution. 11 613 muscle nuclei (WT, 5838; Ptrf KO, 5775) were classified into 12 clusters corresponding to 11 nuclear types. Trajectory analysis revealed the potential transition between type IIb_1 and IIb_2 myonuclei upon muscular dystrophy. Functional enrichment analysis indicated that apoptotic signaling and enzyme-linked receptor protein signaling pathway were significantly enriched in type IIb_1 and IIb_2 myonuclei of Ptrf KO, respectively. The muscle structure development and the PI3K-AKT signaling pathway were significantly enriched in type IIa and IIx myonuclei of Ptrf KO. Meanwhile, metabolic pathway analysis showed a decrease in overall metabolic pathway activity of myonuclei subtypes upon muscular dystrophy, with the most decrease in type IIb_1 myonuclei. Gene regulatory network analysis found that the activity of Mef2c, Mef2d, Myf5, and Pax3 regulons was enhanced in type II myonuclei of Ptrf KO, especially in type IIb_2 myonuclei. In addition, we investigated the transcriptome changes in adipocytes and found that muscular dystrophy enhanced the lipid metabolic capacity of adipocytes. Our findings provide a valuable resource for exploring the molecular mechanism of muscular dystrophy due to Ptrf deficiency.


Assuntos
Distrofias Musculares , Transcriptoma , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Distrofias Musculares/genética , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo
11.
Cells ; 12(8)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37190016

RESUMO

Skeletal muscle formation is an extremely important step in animal growth and development. Recent studies have found that TMEM8c (also known as Myomaker, MYMK), a muscle-specific transmembrane protein, can promote myoblast fusion and plays a key role in the normal development of skeletal muscle. However, the effect of Myomaker on porcine (Sus scrofa) myoblast fusion and the underlying regulatory mechanisms remain largely unknown. Therefore, in this study, we focused on the role and corresponding regulatory mechanism of the Myomaker gene during skeletal muscle development, cell differentiation, and muscle injury repair in pigs. We obtained the entire 3' UTR sequence of porcine Myomaker using the 3' RACE approach and found that miR-205 inhibited porcine myoblast fusion by targeting the 3' UTR of Myomaker. In addition, based on a constructed porcine acute muscle injury model, we discovered that both the mRNA and protein expression of Myomaker were activated in the injured muscle, while miR-205 expression was significantly inhibited during skeletal muscle regeneration. The negative regulatory relationship between miR-205 and Myomaker was further confirmed in vivo. Taken together, the present study reveals that Myomaker plays a role during porcine myoblast fusion and skeletal muscle regeneration and demonstrates that miR-205 inhibits myoblast fusion through targeted regulation of the expression of Myomaker.


Assuntos
MicroRNAs , Doenças Musculares , Animais , Suínos , Regiões 3' não Traduzidas/genética , Mioblastos/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Membrana/metabolismo , Doenças Musculares/genética , MicroRNAs/genética , MicroRNAs/metabolismo
12.
J Biol Chem ; 299(6): 104757, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116707

RESUMO

Elucidating the regulatory mechanisms of human adipose tissues (ATs) evolution is essential for understanding human-specific metabolic regulation, but the functional importance and evolutionary dynamics of three-dimensional (3D) genome organizations of ATs are not well defined. Here, we compared the 3D genome architectures of anatomically distinct ATs from humans and six representative mammalian models. We recognized evolutionarily conserved and human-specific chromatin conformation in ATs at multiple scales, including compartmentalization, topologically associating domain (TAD), and promoter-enhancer interactions (PEI), which have not been described previously. We found PEI are much more evolutionarily dynamic with respect to compartmentalization and topologically associating domain. Compared to conserved PEIs, human-specific PEIs are enriched for human-specific sequence, and the binding motifs of their potential mediators (transcription factors) are less conserved. Our data also demonstrated that genes involved in the evolutionary dynamics of chromatin organization have weaker transcriptional conservation than those associated with conserved chromatin organization. Furthermore, the genes involved in energy metabolism and the maintenance of metabolic homeostasis are enriched in human-specific chromatin organization, while housekeeping genes, health-related genes, and genetic variations are enriched in evolutionarily conserved compared to human-specific chromatin organization. Finally, we showed extensively divergent human-specific 3D genome organizations among one subcutaneous and three visceral ATs. Together, these findings provide a global overview of 3D genome architecture dynamics between ATs from human and mammalian models and new insights into understanding the regulatory evolution of human ATs.


Assuntos
Tecido Adiposo , Cromatina , Genoma , Animais , Humanos , Cromatina/genética , Montagem e Desmontagem da Cromatina , Genômica , Homeostase , Mamíferos , Tecido Adiposo/metabolismo
13.
Curr Issues Mol Biol ; 45(3): 2338-2350, 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36975521

RESUMO

Macrophages are the foremost controllers of innate and acquired immunity, playing important roles in tissue homeostasis, vasculogenesis, and congenital metabolism. In vitro macrophages are crucial models for understanding the regulatory mechanism of immune responses and the diagnosis or treatment of a variety of diseases. Pigs are the most important agricultural animals and valuable animal models for preclinical studies, but there is no unified method for porcine macrophage isolation and differentiation at present; no systematic study has compared porcine macrophages obtained by different methods. In the current study, we obtained two M1 macrophages (M1_IFNγ + LPS, and M1_GM-CSF) and two M2 macrophages (M2_IL4 + IL10, and M2_M-CSF), and compared the transcriptomic profiles between and within macrophage phenotypes. We observed the transcriptional differences either between or within phenotypes. Porcine M1 and M2 macrophages have consistent gene signatures with human and mouse macrophage phenotypes, respectively. Moreover, we performed GSEA analysis to attribute the prognostic value of our macrophage signatures in discriminating various pathogen infections. Our study provided a framework to guide the interrogation of macrophage phenotypes in the context of health and disease. The approach described here could be used to propose new biomarkers for diagnosis in diverse clinical settings including porcine reproductive and respiratory syndrome virus (PRRSV), African swine fever virus (ASFV), Toxoplasma gondii (T. gondii), porcine circovirus type 2 (PCV2), Haemophilus parasuis serovar 4 (HPS4), Mycoplasma hyopneumoniae (Mhp), Streptococcus suis serotype 2 (SS2), and LPS from Salmonella enterica serotype minnesota Re 595.

14.
Animals (Basel) ; 13(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36766234

RESUMO

This study aims to compare the fecal microbiome-metabolome response to copper sulfate (CuSO4) and copper glycinate (Cu-Gly) in pigs. Twelve Meishan gilts were allocated into the CuSO4 group and the Cu-Gly group (fed on a basal diet supplemented with 60 mg/kg copper from CuSO4 or Cu-Gly) paired in litter and body weight. After a two-week feeding trial, the Cu-Gly group had a higher copper digestibility, blood hemoglobin, and platelet volume and higher levels of plasma iron and insulin-like growth factor-1 than the CuSO4 group. The Cu-Gly treatment increased the abundance of the Lachnospiraceae family and the genera Lachnospiraceae XPB1014, Corprococcus_3, Anaerorhabdus_furcosa_group, Lachnospiraceae_FCS020_group, and Lachnospiraceae_NK4B4_group and decreased the abundance of the Synergistetes phylum and Peptostreptococcaceae family compared to the CuSO4 treatment. Moreover, the Cu-Gly group had a lower concentration of 20-Oxo-leukotriene E4 and higher concentrations of butyric acid, pentanoic acid, isopentanoic acid, coumarin, and Nb-p-Coumaroyl-tryptamine than the CuSO4 group. The abundance of Synergistetes was positively correlated with the fecal copper content and negatively correlated with the fecal butyric acid content. The abundance of the Lachnospiraceae_XPB1014_group genus was positively correlated with the plasma iron level and fecal contents of coumarin and butyric acid. In conclusion, Cu-Gly and CuSO4 could differentially affect fecal microbiota and metabolites, which partially contributes to the intestinal health of pigs in different manners.

15.
Genes (Basel) ; 14(1)2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36672902

RESUMO

Animal fat deposition has a significant impact on meat flavor and texture. However, the molecular mechanisms of fat deposition are not well understood. LncPLAAT3-AS is a naturally occurring transcript that is abundant in porcine adipose tissue. Here, we focus on the regulatory role of lncPLAAT3-AS in promoting preadipocyte proliferation and adipocyte differentiation. By overexpressing or repressing lncPLAAT3 expression, we found that lncPLAAT3-AS promoted the transcription of its host gene PLAAT3, a regulator of adipocyte differentiation. In addition, we predicted the region of lncPLAAT3-AS that binds to miR-503-5p and showed by dual luciferase assay that lncPLAAT3-AS acts as a sponge to absorb miR-503-5p. Interestingly, miR-503-5p also targets and represses PLAAT3 expression and helps regulate porcine preadipocyte proliferation and differentiation. Taken together, these results show that lncPLAAT3-AS upregulates PLAAT3 expression by absorbing miR-503-5p, suggesting a potential regulatory mechanism based on competing endogenous RNAs. Finally, we explored lncPLAAT3-AS and PLAAT3 expression in adipose tissue and found that both molecules were expressed at significantly higher levels in fatty pig breeds compared to lean pig breeds. In summary, we identified the mechanism by which lncPLAAT3-AS regulates porcine preadipocyte proliferation and differentiation, contributing to our understanding of the molecular mechanisms of lipid deposition in pigs.


Assuntos
Adipócitos , MicroRNAs , Suínos/genética , Animais , Adipócitos/metabolismo , Lipogênese/genética , MicroRNAs/metabolismo , Adipogenia/genética , Tecido Adiposo/metabolismo
16.
Anim Biotechnol ; 34(7): 2596-2607, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35960868

RESUMO

Domestication caused significant differences in morphology and behavior between wild and domestic pigs. However, the regulatory role of circRNA in this event is unclear. Here, we analyzed circRNA expression patterns in the prefrontal cortices of wild boar and domestic pigs to determine the potential role of circRNAs in domestication. We identified a total of 11,375 circRNAs and found that 349 and 354 circRNAs were up-regulated in wild boar and Rongchang pig, respectively. Functional enrichment analysis showed that host genes of significantly highly-expressed circRNAs in wild boar were significantly enriched in neural synapse-related categories and the categories of 'regulation of defense response (p = 0.028)' and 'neural retina development (p = 4.32 × 10-3)'. Host genes of significantly highly-expressed circRNAs in Rongchang pig were specifically involved in 'chordate embryonic development (p = 2.38 × 10-4)'. Additionally, we constructed circRNA-miRNA-mRNA regulatory axes in wild boar and Rongchang pig and found more regulatory axes in wild boar that potentially regulate synaptic activities. We identified multiple circRNAs that may be related to domesticated characteristics, such as ssc_circ_6179 (ssc_circ_6179-ssc-miR-9847-HRH3, related to aggression) and ssc_circ_3027 (ssc_circ_3027-ssc-miR-4334-5p-HCRTR1, related to attention). This study provides a resource for further investigation of the molecular basis of pig domestication.


Assuntos
MicroRNAs , Sus scrofa , Suínos/genética , Animais , Sus scrofa/genética , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Genes (Basel) ; 13(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36553580

RESUMO

The breast muscle is essential for flight and determines the meat yield and quality of the meat type in pigeons. At present, studies about long non-coding RNA (lncRNA) expression profiles in skeletal muscles across the postnatal development of pigeons have not been reported. Here, we used transcriptome sequencing to examine the White-King pigeon breast muscle at four different ages (1 day, 14 days, 28 days, and 2 years old). We identified 12,918 mRNAs and 9158 lncRNAs (5492 known lncRNAs and 3666 novel lncRNAs) in the breast muscle, and 7352 mRNAs and 4494 lncRNAs were differentially expressed in the process of development. We found that highly expressed mRNAs were mainly related to cell-basic and muscle-specific functions. Differential expression and time-series analysis showed that differentially expressed genes were primarily associated with muscle development and functions, blood vessel development, cell cycle, and energy metabolism. To further predict the possible role of lncRNAs, we also conducted the WGCNA and trans/cis analyses. We found that differentially expressed lncRNAs such as lncRNA-LOC102093252, lncRNA-G12653, lncRNA-LOC110357465, lncRNA-G14790, and lncRNA-LOC110360188 might respectively target UBE2B, Pax7, AGTR2, HDAC1, Sox8 and participate in the development of the muscle. Our study provides a valuable resource for studying the lncRNAs and mRNAs of pigeon muscles and for improving the understanding of molecular mechanisms in muscle development.


Assuntos
RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Redes Reguladoras de Genes , Columbidae/genética , Columbidae/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Músculos Peitorais/metabolismo
18.
Front Immunol ; 13: 967576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045669

RESUMO

Hypoxia is a common hallmark of healthy tissues in physiological states or chronically inflamed tissues in pathological states. Mammalian cells sense and adapt to hypoxia mainly through hypoxia-inducible factor (HIF) signaling. Many studies have shown that hypoxia and HIF signaling play an important regulatory role in development and function of innate immune cells and T cells, but their role in B cell biology is still controversial. B cells experience a complex life cycle (including hematopoietic stem cells, pro-B cells, pre-B cells, immature B cells, mature naïve B cells, activated B cells, plasma cells, and memory B cells), and the partial pressure of oxygen (PO2) in the corresponding developmental niche of stage-specific B cells is highly dynamic, which suggests that hypoxia and HIF signaling may play an indispensable role in B cell biology. Based on the fact that hypoxia niches exist in the B cell life cycle, this review focuses on recent discoveries about how hypoxia and HIF signaling regulate the development, metabolism, and function of B cells, to facilitate a deep understanding of the role of hypoxia in B cell-mediated adaptive immunity and to provide novel strategies for vaccine adjuvant research and the treatment of immunity-related or infectious diseases.


Assuntos
Linfócitos B , Hipóxia , Imunidade Adaptativa , Animais , Linfócitos B/metabolismo , Hipóxia/metabolismo , Mamíferos/metabolismo , Oxigênio/metabolismo , Linfócitos T
19.
J Biol Chem ; 298(8): 102149, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35787372

RESUMO

Skeletal muscle differentiation (myogenesis) is a complex and highly coordinated biological process regulated by a series of myogenic marker genes. Chromatin interactions between gene's promoters and their enhancers have an important role in transcriptional control. However, the high-resolution chromatin interactions of myogenic genes and their functional enhancers during myogenesis remain largely unclear. Here, we used circularized chromosome conformation capture coupled with next generation sequencing (4C-seq) to investigate eight myogenic marker genes in C2C12 myoblasts (C2C12-MBs) and C2C12 myotubes (C2C12-MTs). We revealed dynamic chromatin interactions of these marker genes during differentiation and identified 163 and 314 significant interaction sites (SISs) in C2C12-MBs and C2C12-MTs, respectively. The interacting genes of SISs in C2C12-MTs were mainly involved in muscle development, and histone modifications of the SISs changed during differentiation. Through functional genomic screening, we also identified 25 and 41 putative active enhancers in C2C12-MBs and C2C12-MTs, respectively. Using luciferase reporter assays for putative enhancers of Myog and Myh3, we identified eight activating enhancers. Furthermore, dCas9-KRAB epigenome editing and RNA-Seq revealed a role for Myog enhancers in the regulation of Myog expression and myogenic differentiation in the native genomic context. Taken together, this study lays the groundwork for understanding 3D chromatin interaction changes of myogenic genes during myogenesis and provides insights that contribute to our understanding of the role of enhancers in regulating myogenesis.


Assuntos
Diferenciação Celular , Cromatina , Elementos Facilitadores Genéticos , Desenvolvimento Muscular , Mioblastos , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Código das Histonas , Camundongos , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas , Mioblastos/citologia
20.
BMC Genomics ; 23(1): 519, 2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35842589

RESUMO

BACKGROUND: Skeletal muscles consist of fibers of differing contractility and metabolic properties, which are primarily determined by the content of myosin heavy chain (MYH) isoforms (MYH7, MYH2, MYH1, and MYH4). The regulation of Myh genes transcription depends on three-dimensional chromatin conformation interaction, but the mechanistic details remain to be determined. RESULTS: In this study, we characterized the interaction profiles of Myh genes using 4C-seq (circular chromosome conformation capture coupled to high-throughput sequencing). The interaction profile of Myh genes changed between fast quadriceps and slow soleus muscles. Combining chromatin immunoprecipitation-sequencing (ChIP-seq) and transposase accessible chromatin with high-throughput sequencing (ATAC-seq), we found that a 38 kb intergenic region interacting simultaneously with fast Myh genes promoters controlled the coordinated expression of fast Myh genes. We also identified four active enhancers of Myh7, and revealed that binding of MYOG and MYOD increased the activity of Myh7 enhancers. CONCLUSIONS: This study provides new insight into the chromatin interactions that regulate Myh genes expression.


Assuntos
Músculo Esquelético , Cadeias Pesadas de Miosina , Cromatina/genética , Cromatina/metabolismo , Expressão Gênica , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA