Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(10): 1285-1288, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38197129

RESUMO

Herein, we reported an efficient indium catalyzed dithianyl-alkyne metathesis (DAM) reaction. This strategy allows for the formation of a new C-C double bond and valuable C-S bonds during the metathesis event, and was successfully applied to the synthesis of diverse vinyl dithianyl substituted organic molecules.

3.
Iran J Immunol ; 20(1): 129-134, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36934323

RESUMO

Several cases of the hemolytic disease of the fetus and newborn (HDFN) caused by immunoglobulin G (IgG) anti-M antibodies have been reported, in which almost all the HDFN-associated anti-M were warmly reacting. Here we report two cases of severe HDFN associated with cold-reacting IgG anti-M. In both cases, pregnancy was terminated, in weeks 33 and 23 respectively, due to a diagnosis of fetal growth retardation (FGR). To our knowledge, these are the most severe HDFN cases caused by cold-reacting IgG anti-M.


Assuntos
Antígenos de Grupos Sanguíneos , Eritroblastose Fetal , Gravidez , Feminino , Recém-Nascido , Humanos , Imunoglobulina G , Eritroblastose Fetal/diagnóstico , Eritroblastose Fetal/etiologia , Feto
4.
Nanoscale Res Lett ; 17(1): 118, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36484877

RESUMO

Structure has been considered to play an important role in photocatalytic performance of the semiconductors, but the intrinsic factors were rarely revealed. Herein, ZnO nanomaterials in the structures of thin film, nanowire array and nanosheet array were synthesized, and their structural characteristics, optical properties, photocurrent response and photocatalytic efficiency were compared with each other for illustrating the issue. The photoluminescence intensity decreased in the order of nanosheets, thin film and nanowires for improved lifetime of the photoexcited charges. The absorption of the nanosheets and nanowires improved obviously in the visible range with a redshift of the absorption edge than that of the thin film. The nanowires possessed the highest response current of 82.65 µA at a response time of 2.0 ms in a sensitivity of 87.93 at the light frequency of 1 Hz, and gained the largest catalytic efficiency of 2.45 µg/cm2 h for the methylene blue degradation in UV light. Nevertheless, the improvement of catalytic efficiency of the nanosheets (up to 42.4%) was much larger than that of nanowires (5.7%) and thin film (2.6%) for the Au coating. The analysis revealed that the photocatalytic efficiency of the ZnO nanomaterials was modulated by the structure as it contained different surface area, roughness, defect and doping states, vacancies, polar and non-polar crystalline faces, which would provide structural design of semiconductor nanomaterials for the photoelectric and photocatalytic applications.

5.
Opt Express ; 30(5): 6700-6712, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299449

RESUMO

Magneto-optical (MO) properties of the bilayed Au/BIG and trilayered Au/BIG/Au magneto-plasmonic crystals (MPCs) were analyzed by the finite-difference time-domain method. In contrast to the low deflection angle and transmission of the smooth thin film, all the heterostructures with perforated holes in the top Au film displayed a similar trend with two strong resonant bands in Faraday rotation and transmittance in the near infrared wavelength range. The bands and electric distribution relative to the component and hole structure were revealed. The MPC with plasmonic hexagonal holes was found to own superior Faraday effects with distinctive anisotropy. The evolution of the resonant bands with the size and period of hexagonal holes, the thickness of different layers, and the incident light polarization was illustrated. The Faraday rotation of the optimized bilayed and trilayered hexagonal MPCs was improved 15.3 and 17.5 times, and the transmittance was enhanced 12.1 and 11.1 folds respectively at the resonant wavelength in comparison to the continuous Au/BIG film, indicating that the systems might find potential application in MO devices.

6.
Org Lett ; 23(12): 4834-4837, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34076451

RESUMO

A formal (4 + 1)-cycloaddition of vinylcyclopropanes and Et2SiH2 to afford 3,4-disubstituted silolanes is reported. The reaction sequence commences with the known B(C6F5)3-catalyzed alkene hydrosilylation with dihydrosilanes. Cleavage of the remaining Si-H bond in the hydrosilylation product assisted by B(C6F5)3 leads to formation of a cyclopropane-stabilized silylium ion. The activated cyclopropane ring is then opened by the in situ-generated borohydride accompanied by ring closure to the silolane. The diastereoselectivity is rationalized by a mechanistic model.

7.
Environ Sci Pollut Res Int ; 28(14): 17636-17647, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33400121

RESUMO

In this work, copper hexacyanocobaltate was electro-deposited at amino-graphene-coated indium-tin-oxide glass to form multifunctional heterogeneous catalyst (CuCoG/ITO), which was confirmed by field emission scanning microscope, infrared spectra, X-ray diffraction, and electro-chemistry techniques. A novel heterogeneous photo-electro-Fenton-like system was established using CuCoG/ITO as an air-diffusion electrode, in which hydrogen peroxide (H2O2) and hydroxyl radical (•OH) could be simultaneously generated by air O2 reduction. The productive rate of •OH could reached to 70.5 µmol h-1 at - 0.8 V with 300 W visible light irradiation at pH 7.0, 0.1 M PBS. Levofloxacin could be quickly degraded at CuCoG/ITO during heterogeneous photo-electro-Fenton process in neutral media with a first-order kinetic constant of 0.49 h-1.


Assuntos
Grafite , Poluentes Químicos da Água , Catálise , Cobre , Eletrodos , Peróxido de Hidrogênio , Levofloxacino , Oxirredução , Poluentes Químicos da Água/análise
8.
Org Lett ; 22(18): 7383-7386, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32903017

RESUMO

A hydrosilylation of vinylcyclopropanes (VCPs) catalyzed by the strong boron Lewis acid B(C6F5)3 is reported. For the majority of VCPs, little or no ring opening of the cyclopropyl unit is observed. Conversely, for VCPs with bulky R groups, such as ortho-substituted aryl rings or branched alkyl residues, ring opening is the exclusive reaction pathway. This finding is explained by the thwarted hydride delivery to a sterically shielded, ß-silicon-stabilized cyclopropylcarbinyl cation intermediate.

9.
Chem Commun (Camb) ; 56(30): 4188-4191, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32167108

RESUMO

A highly chemoselective platinum-catalyzed mono-lateral diboration of dialkynylsilanes for the construction of silicon-tethered alkynyl diborylalkenes is described, in which tris(4-methoxyphenyl)phosphine was found to be an effective ligand for the cis-addition of diboron agents to the silicon-tethered alkynes, and the chiral ligand (AFSi-Phos)-mediated diboration of dialkynylsilanes resulted in the desymmetric construction of silicon-stereogenic centers with promising enantioselectivity.

10.
Chem Sci ; 12(2): 569-575, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34163787

RESUMO

A trityl-cation-initiated annulation of benzyl-substituted vinylcyclopropanes (VCPs) with hydrosilanes is reported. Two Si-C(sp3) bonds and one C(sp2)-C(sp3) bond are formed in this process where an intramolecular 6-endo-tet Friedel-Crafts alkylation of a silylium-ion-activated cyclopropane ring is the rate-determining key step. The reaction mechanism is proposed based on computations and is in agreement with experimental observations. The new reaction leads to an unprecedented silicon-containing 6/6/5-fused ring system. A phenethyl-substituted VCP derivative yields another unknown tricycle having 6/6/6 ring fusion by reacting in a related but different way involving a 6-exo-tet ring closure.

11.
ACS Appl Mater Interfaces ; 10(35): 29909-29917, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30047262

RESUMO

It is highly challenging to achieve an optically deformable polymer with good controllability, stability, and self-healability for fabricating an optically controlled microrobotics. Here, we present a photo-responsive self-healing supramolecular assembly cross-linked by 3,3',5,5'-azobenzenetetracarboxylic acid (t-Azo) enabling the controllable and stable deformation. The network (PAA-u) of polyacrylic acid (PAA) grafted with 2-ureido-4[1 H]-pyrimidinone (UPy) is formed via multiple intermolecular hydrogen bonds (H-bonds) between UPy and t-Azo moieties. Molecular H-bonds stabilize the cis-isomer, enables stress transfer at the interface, and also contributes to fast healability. The PAA-u/t-Azo assembly shows a green-light-induced bending deformation, which recovers its shape under the irradiation of UV light. On the basis of this controllable and reversible deformation, the PAA-u/t-Azo "hand" realizes reversible light-driven grabbing and releasing of an object by optimizing bending and recovery. The assembly also shows a fast and excellent self-healing performance irradiated by green light during deformation. The multiple-H-bonding-cross-linked assembly with stable deformation and fast self-healability can be used for the development of a multitude of advanced microrobotics.

12.
Nanoscale ; 10(34): 15989-15997, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29856449

RESUMO

We describe sonication-assisted liquid-phase exfoliation of rhombohedral germanium telluride (α-GeTe) to obtain a good dispersion of α-GeTe nanosheets in ethanol. The thickness of the α-GeTe nanosheets is dependent on the exfoliation conditions, and few-layer α-GeTe nanosheets of 2-4 layers and even monolayer α-GeTe were obtained. We use first-principles calculations to investigate the structural, electronic, and optical properties of monolayer and bulk α-GeTe and compare the optical band gap of centrifugally fractionated α-GeTe nanosheet dispersions with the computational predictions. We demonstrate that few layer α-GeTe nanosheets are purified selectively through centrifugation, and they exhibit high sensitivity to Fe3+. The scalable production of two-dimensional α-GeTe nanosheets can be used in the future optoelectronic industry.

13.
Chem Commun (Camb) ; 54(22): 2727-2730, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29411784

RESUMO

A fluorine-doped reduced graphene oxide (F-rGO), predominantly in the form of CF2 groups, was synthesized using the reduced-graphene-oxide precursor devoid of residual hydroxyl and carboxyl groups through a solvothermal process. The vacancies and defects accompanying the formation of the highly stable and electrochemically inert CF2 groups contribute to the excellent cycling stability of F-rGO, when it is applied as the anode material in a lithium-ion battery.

14.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 31(3): 343-345, 2018 Jun 05.
Artigo em Chinês | MEDLINE | ID: mdl-31544424

RESUMO

OBJECTIVE: To investigate the Blomia tropicalis breeding status in the ground dust rice collected in Haikou City. METHODS: Totally 17 samples of ground dust rice were collected from 10 sampling sites in Haikou City. Then 10 g of dust rice was taken from each individual sample for isolation of the mites that were made of slide specimen, and the mites were identified and classified under a microscope. RESULTS: B. tropicalis mites were found in all the 17 samples with the detection rate of 100%. A total of 1 176 heads of B. tropicalis were isolated, with an average breeding density of 6.91 heads/g. CONCLUSIONS: B. tropicalis breeding status is severe in Haikou City. The effective measures should be taken to prevent and control the harm associated with B. tropicalis contamination.


Assuntos
Cruzamento , Ácaros , Oryza , Animais , China , Parasitologia de Alimentos , Oryza/parasitologia , Densidade Demográfica
15.
RSC Adv ; 8(31): 17325-17333, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35539238

RESUMO

Amorphous red phosphorus/pyrolyzed bacterial cellulose (P-PBC) free-standing films are prepared by thermal carbonization and a subsequent vaporization-condensation process. The distinctive bundle-like structure of the flexible pyrolyzed bacterial cellulose (PBC) matrix not only provides sufficient volume to accommodate amorphous red-phosphorus (P) but also restricts the pulverization of red-P during the alternate lithiation/delithiation process. When the mass ratio of raw materials, red-P to PBC, is 70 : 1, the free-standing P-PBC film anode exhibits high reversible capacity based on the mass of the P-PBC film (1039.7 mA h g-1 after 100 cycle at 0.1C, 1C = 2600 mA g-1) and good cycling stability at high current density (capacity retention of 82.84% after 1000 cycles at 2C), indicating its superior electrochemical performances.

16.
RSC Adv ; 8(41): 22944-22951, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35540169

RESUMO

To shed light on the influence of reaction parameters on palladium-catalyzed tandem allylic alkylation in the presence of Fei-Phos (a chiral trans-1,2-diaminocyclohexane-derived phosphine ligand), the effect of different phosphine ligands, inorganic or organic bases, Brønsted acids, and other additives on the asymmetric palladium-catalysed alkylation of catechol with allylic diacetate was investigated. In this reaction, 2-vinyl-2,3-dihydro-benzo[1,4]dioxin products with promising enantioselectivity were achieved in good yields. In addition, a novel palladium-catalyzed three-component and one-pot allylic substitution/cyclization/reduction reaction assisted by methylphenylsilane was reported with good selectivity.

17.
ACS Appl Mater Interfaces ; 9(43): 37981-37990, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29022346

RESUMO

Solid-state fluorescent carbon quantum dots (QDs) can be used for the encryption of security information. Controlling the dispersion and aggregation of the QDs is crucial for switching their solid-state fluorescence "on" and "off." The use of polymers has been proposed to slightly separate the QDs inside aggregates to trigger their fluorescence. However, the complex interactions between the QDs and flexible polymer chains make this process challenging. Here, fluorine-modified carbon nanodots (FCDs) were used in a solution as the printing ink. After printing, the FCDs were aggregated on paper via hydrogen bonds, thereby quenching the fluorescence. After a poly(ethylene glycol) (PEG) treatment, the FCDs exhibited yellow solid-state fluorescence due to an increased interdot spacing. The fluorescence intensity and emission wavelength could be tuned by varying the molecular weight and quantity of PEG used. Finally, we demonstrated a high-resolution encryption and decryption system based on the PEG-triggered fluorescence of FCDs.

18.
Adv Sci (Weinh) ; 3(7): 1500413, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27981018

RESUMO

Fluorinated graphene, an up-rising member of the graphene family, combines a two-dimensional layer-structure, a wide bandgap, and high stability and attracts significant attention because of its unique nanostructure and carbon-fluorine bonds. Here, we give an extensive review of recent progress on synthetic methods and C-F bonding; additionally, we present the optical, electrical and electronic properties of fluorinated graphene and its electrochemical/biological applications. Fluorinated graphene exhibits various types of C-F bonds (covalent, semi-ionic, and ionic bonds), tunable F/C ratios, and different configurations controlled by synthetic methods including direct fluorination and exfoliation methods. The relationship between the types/amounts of C-F bonds and specific properties, such as opened bandgap, high thermal and chemical stability, dispersibility, semiconducting/insulating nature, magnetic, self-lubricating and mechanical properties and thermal conductivity, is discussed comprehensively. By optimizing the C-F bonding character and F/C ratios, fluorinated graphene can be utilized for energy conversion and storage devices, bioapplications, electrochemical sensors and amphiphobicity. Based on current progress, we propose potential problems of fluorinated graphene as well as the future challenge on the synthetic methods and C-F bonding character. This review will provide guidance for controlling C-F bonds, developing fluorine-related effects and promoting the application of fluorinated graphene.

19.
Nano Lett ; 16(11): 7148-7154, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27766883

RESUMO

High energy and power densities are the greatest challenge for all-solid-state lithium batteries due to the poor interfacial compatibility between electrodes and electrolytes as well as low lithium ion transfer kinetics in solid materials. Intimate contact at the cathode-solid electrolyte interface and high ionic conductivity of solid electrolyte are crucial to realizing high-performance all-solid-state lithium batteries. Here, we report a general interfacial architecture, i.e., Li7P3S11 electrolyte particles anchored on cobalt sulfide nanosheets, by an in situ liquid-phase approach. The anchored Li7P3S11 electrolyte particle size is around 10 nm, which is the smallest sulfide electrolyte particles reported to date, leading to an increased contact area and intimate contact interface between electrolyte and active materials. The neat Li7P3S11 electrolyte synthesized by the same liquid-phase approach exhibits a very high ionic conductivity of 1.5 × 10-3 S cm-1 with a particle size of 0.4-1.0 µm. All-solid-state lithium batteries employing cobalt sulfide-Li7P3S11 nanocomposites in combination with the neat Li7P3S11 electrolyte and Super P as the cathode and lithium metal as the anode exhibit excellent rate capability and cycling stability, showing reversible discharge capacity of 421 mAh g-1 at 1.27 mA cm-2 after 1000 cycles. Moreover, the obtained all-solid-state lithium batteries possesses very high energy and power densities, exhibiting 360 Wh kg-1 and 3823 W kg-1 at current densities of 0.13 and 12.73 mA cm-2, respectively. This contribution demonstrates a new interfacial design for all-solid-state battery with high performance.

20.
Artigo em Inglês | MEDLINE | ID: mdl-26454344

RESUMO

Soxhlet-assisted matrix solid phase dispersion (SA-MSPD) method was developed to extract flavonoids from rape (Brassica campestris) bee pollen. Extraction parameters including the extraction solvent, the extraction time, and the solid support conditions were investigated and optimized. The best extraction yields were obtained using ethanol as the extraction solvent, silica gel as the solid support with 1:2 samples to solid support ratio, and the extraction time of one hour. Comparing with the conventional solvent extraction and Soxhlet method, our results show that SA-MSPD method is a more effective technique with clean-up ability. In the test of six different samples of rape bee pollen, the extracted content of flavonoids was close to 10mg/g. The present work provided a simple and effective method for extracting flavonoids from rape bee pollen, and it could be applied in the studies of other kinds of bee pollen.


Assuntos
Brassica , Flavonoides/isolamento & purificação , Pólen/química , Extração em Fase Sólida/métodos , Animais , Abelhas , Cromatografia Líquida de Alta Pressão , Desenho de Equipamento , Flavonoides/análise , Extração Líquido-Líquido , Extração em Fase Sólida/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA