Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37421041

RESUMO

NdFeB materials are widely used in the manufacturing of micro-linear motor sliders due to their excellent permanent magnetic properties. However, there are many challenges in processing the slider with micro-structures on the surface, such as complicated steps and low efficiency. Laser processing is expected to solve these problems, but few studies have been reported. Therefore, simulation and experiment studies in this area are of great significance. In this study, a two-dimensional simulation model of laser-processed NdFeB material was established. Based on the overall effects of surface tension, recoil pressure, and gravity, the temperature field distribution and morphological characteristics with laser processing were analyzed. The flow evolution in the melt pool was discussed, and the mechanism of microstructure formation was revealed. In addition, the effect of laser scanning speed and average power on machining morphology was investigated. The results show that at an average power of 8 W and a scanning speed of 100 mm/s, the simulated ablation depth is 43 µm, which is consistent with the experimental results. During the machining process, the molten material accumulated on the inner wall and the outlet of the crater after sputtering and refluxing, forming a V-shaped pit. The ablation depth decreases with the increment of the scanning speed, while the depth and length of the melt pool, along with the height of the recast layer, increase with the average power.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA