Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell Mol Immunol ; 20(10): 1232-1250, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37644166

RESUMO

SEL1L-mediated endoplasmic reticulum-associated degradation (ERAD) plays critical roles in controlling protein homeostasis by degrading misfolded or terminal unfolded proteins. However, it remains unclear how SEL1L regulates peripheral T-cell survival and homeostasis. Herein, we found that SEL1L deficiency led to a greatly reduced frequency and number of mature T cells, which was further validated by adoptive transfer experiments or bone marrow chimera experiments, accompanied by the induction of multiple forms of cell death. Furthermore, SEL1L deficiency selectively disrupted naïve CD8+ T-cell homeostasis, as indicated by the severe loss of the naïve T-cell subset but an increase in the memory T-cell subset. We also found that SEL1L deficiency fueled mTORC1/c-MYC activation and induced a metabolic shift, which was largely attributable to enhanced expression of the IL-15 receptor α and ß chains. Mechanistically, single-cell transcriptomic profiling and biochemical analyses further revealed that Sel1l-/- CD8+ T cells harbored excessive ER stress, particularly aberrant activation of the PERK-ATF4-CHOP-Bim pathway, which was alleviated by supplementing IL-7 or IL-15. Importantly, PERK inhibition greatly resolved the survival defects of Sel1l-/- CD8+ T cells. In addition, IRE1α deficiency decreased mTORC1 signaling in Sel1l-/- naïve CD8+ T cells by downregulating the IL-15 receptor α chain. Altogether, these observations suggest that the ERAD adaptor molecule SEL1L acts as an important checkpoint for preserving the survival and homeostasis of peripheral T cells by regulating the PERK signaling cascade and IL-15 receptor-mediated mTORC1 axis.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Proteínas Serina-Treonina Quinases , Linfócitos T CD8-Positivos/metabolismo , Sobrevivência Celular , Endorribonucleases/metabolismo , Homeostase , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Camundongos
2.
Mol Immunol ; 149: 13-26, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35696849

RESUMO

Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) are demyelinating neuroinflammatory diseases identified by the accumulation and aggregation of misfolded proteins in the brain. The Sel1L-Hrd1 complex comprising endoplasmic reticulum associated degradation (ERAD) is an ER-protein quality control system (ERQC) in the cell. Unfortunately, the contribution of ERAD to the development of these diseases has not been well explored. In this study, we used mice with a conditional deletion (KO) of Sel1L in T cells to dissect the role of ERAD on T cells and its contribution to the development of EAE. The results showed that Sel1L KO mice developed more severe EAE than the control wild type (WT) mice. Although, no obvious effects on peripheral T cells in steady state, more CD44-CD25+ double-negative stage 3 (DN3) cells were detected in the thymus. Moreover, Sel1L deficiency promoted the differentiation of Th1 and Th17 cells and upregulated the proliferation and apoptosis of CD4 T cells in vitro. Regarding the mechanism analyzed by RNA sequencing, 437 downregulated genes and 271 upregulated genes were detected in Sel1L deletion CD4 T cells, which covered the activation, proliferation, differentiation and apoptosis of these T cells. Thus, this study declared that the dysfunction of Sel1L in ERAD in T cells exacerbated the severity of EAE and indicated the important role of ERQC in maintaining immune homeostasis in the central nervous system.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Diferenciação Celular , Encefalomielite Autoimune Experimental/genética , Degradação Associada com o Retículo Endoplasmático , Camundongos , Camundongos Endogâmicos C57BL , Proteínas/genética , Células Th1/metabolismo , Células Th17/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
FEBS J ; 288(23): 6828-6843, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34258867

RESUMO

Adverse fetal environment, in particular a shortage or excess of nutrients, is associated with increased risks of metabolic diseases later in life. However, the molecular mechanisms underlying this developmental origin of adult diseases remain unclear. Here, we directly tested the role of mitochondrial stress in mediating fetal programming in mice by enzymatically depleting mtDNA in zygotes. mtDNA-targeted plasmid microinjection is used to reduce embryonic mtDNA copy number directly, followed by embryo transfer. Mice with reduced zygote mtDNA copy number were born morphologically normal and showed no accelerated body weight gain. However, at 5 months of age these mice showed markedly increased hepatic lipidosis and became glucose-intolerant. Hepatic mRNA and protein expressions of peroxisome proliferator-activated receptor α (Pparα), a key transcriptional regulator of lipid metabolism, were significantly decreased as a result of increased DNA methylation in its proximal regulatory region. These results indicate that perturbation of mitochondrial function around the periconceptional period causes hypermethylation and thus suppressed expression of PPARα in fetal liver, leading to impaired hepatic lipid metabolism. Our findings provide the first direct evidence that mitochondrial stress mediates epigenetic changes associated with fetal programming of adult diseases in a mammalian system.


Assuntos
Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Embrião de Mamíferos/metabolismo , Epigênese Genética , Metabolismo dos Lipídeos/genética , Lipólise/genética , Fígado/metabolismo , Fatores Etários , Animais , Metilação de DNA , Embrião de Mamíferos/embriologia , Epigenômica/métodos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fígado/embriologia , Masculino , Potencial da Membrana Mitocondrial/genética , Camundongos Endogâmicos ICR , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Consumo de Oxigênio/genética , PPAR alfa/genética , PPAR alfa/metabolismo , RNA-Seq/métodos
4.
J Biol Chem ; 295(49): 16743-16753, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32978261

RESUMO

Mitochondrial dysfunction is associated with a variety of human diseases including neurodegeneration, diabetes, nonalcohol fatty liver disease (NAFLD), and cancer, but its underlying causes are incompletely understood. Using the human hepatic cell line HepG2 as a model, we show here that endoplasmic reticulum-associated degradation (ERAD), an ER protein quality control process, is critically required for mitochondrial function in mammalian cells. Pharmacological inhibition or genetic ablation of key proteins involved in ERAD increased cell death under both basal conditions and in response to proinflammatory cytokines, a situation frequently found in NAFLD. Decreased viability of ERAD-deficient HepG2 cells was traced to impaired mitochondrial functions including reduced ATP production, enhanced reactive oxygen species (ROS) accumulation, and increased mitochondrial outer membrane permeability. Transcriptome profiling revealed widespread down-regulation of genes underpinning mitochondrial functions, and up-regulation of genes associated with tumor growth and aggression. These results highlight a critical role for ERAD in maintaining mitochondrial functional and structural integrity and raise the possibility of improving cellular and organismal mitochondrial function via enhancing cellular ERAD capacity.


Assuntos
Degradação Associada com o Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Transcriptoma , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Edição de Genes , Células Hep G2 , Humanos , Interleucina-12/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/genética , Proteínas/genética , Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima
5.
Diabetes ; 68(4): 733-746, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30626610

RESUMO

The molecular underpinnings of ß-cell dysfunction and death leading to diabetes are not fully elucidated. The objective of the current study was to investigate the role of endoplasmic reticulum-associated degradation (ERAD) in pancreatic ß-cells. Chemically induced ERAD deficiency in the rat insulinoma cell line INS-1 markedly reduced glucose-stimulated insulin secretion (GSIS). The mechanistic basis for this effect was studied in cells and mice lacking ERAD as a consequence of genetic ablation of the core ERAD protein SEL1L. Targeted disruption of SEL1L in INS-1 cells and in mouse pancreatic ß-cells impaired ERAD and led to blunted GSIS. Additionally, mice with SEL1L deletion in ß-cells were chronically hyperglycemic after birth and increasingly glucose intolerant over time. SEL1L absence caused an entrapment of proinsulin in the endoplasmic reticulum compartment in both INS-1 cells and mouse pancreatic ß-cells. Both folding-competent and folding-deficient proinsulin can physiologically interact with and be efficiently degraded by HRD1, the E3 ubiquitin ligase subunit of the ERAD complex. GSIS impairment in insulinoma cells was accompanied by a reduced intracellular Ca2+ ion level, overproduction of reactive oxygen species, and lowered mitochondrial membrane potential. Together, these findings suggest that ERAD plays a pivotal role in supporting pancreatic ß-cell function by targeting wild-type and folding-deficient proinsulin for proteosomal degradation. ERAD deficiency may contribute to the development of diabetes by affecting proinsulin processing in the ER, intracellular Ca2+ concentration, and mitochondrial function.


Assuntos
Degradação Associada com o Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Glucose/farmacologia , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Camundongos Transgênicos
6.
EMBO J ; 37(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389665

RESUMO

Fibroblast growth factor 21 (Fgf21) is a liver-derived, fasting-induced hormone with broad effects on growth, nutrient metabolism, and insulin sensitivity. Here, we report the discovery of a novel mechanism regulating Fgf21 expression under growth and fasting-feeding. The Sel1L-Hrd1 complex is the most conserved branch of mammalian endoplasmic reticulum (ER)-associated degradation (ERAD) machinery. Mice with liver-specific deletion of Sel1L exhibit growth retardation with markedly elevated circulating Fgf21, reaching levels close to those in Fgf21 transgenic mice or pharmacological models. Mechanistically, we show that the Sel1L-Hrd1 ERAD complex controls Fgf21 transcription by regulating the ubiquitination and turnover (and thus nuclear abundance) of ER-resident transcription factor Crebh, while having no effect on the other well-known Fgf21 transcription factor Pparα. Our data reveal a physiologically regulated, inverse correlation between Sel1L-Hrd1 ERAD and Crebh-Fgf21 levels under fasting-feeding and growth. This study not only establishes the importance of Sel1L-Hrd1 ERAD in the liver in the regulation of systemic energy metabolism, but also reveals a novel hepatic "ERAD-Crebh-Fgf21" axis directly linking ER protein turnover to gene transcription and systemic metabolic regulation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Degradação Associada com o Retículo Endoplasmático , Metabolismo Energético , Fatores de Crescimento de Fibroblastos/biossíntese , Fígado/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Fatores de Crescimento de Fibroblastos/genética , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Mutantes , PPAR alfa/genética , PPAR alfa/metabolismo , Proteínas/genética , Transcrição Gênica , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética
7.
J Clin Invest ; 128(3): 1125-1140, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29457782

RESUMO

Pro-opiomelanocortin (POMC) neurons function as key regulators of metabolism and physiology by releasing prohormone-derived neuropeptides with distinct biological activities. However, our understanding of early events in prohormone maturation in the ER remains incomplete. Highlighting the significance of this gap in knowledge, a single POMC cysteine-to-phenylalanine mutation at position 28 (POMC-C28F) is defective for ER processing and causes early onset obesity in a dominant-negative manner in humans through an unclear mechanism. Here, we report a pathologically important role of Sel1L-Hrd1, the protein complex of ER-associated degradation (ERAD), within POMC neurons. Mice with POMC neuron-specific Sel1L deficiency developed age-associated obesity due, at least in part, to the ER retention of POMC that led to hyperphagia. The Sel1L-Hrd1 complex targets a fraction of nascent POMC molecules for ubiquitination and proteasomal degradation, preventing accumulation of misfolded and aggregated POMC, thereby ensuring that another fraction of POMC can undergo normal posttranslational processing and trafficking for secretion. Moreover, we found that the disease-associated POMC-C28F mutant evades ERAD and becomes aggregated due to the presence of a highly reactive unpaired cysteine thiol at position 50. Thus, this study not only identifies ERAD as an important mechanism regulating POMC maturation within the ER, but also provides insights into the pathogenesis of monogenic obesity associated with defective prohormone folding.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/patologia , Hipotálamo/patologia , Obesidade/patologia , Pró-Opiomelanocortina/metabolismo , Animais , Axônios , Cisteína/química , Comportamento Alimentar , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intracelular , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neurônios/metabolismo , Fenilalanina/química , Pró-Opiomelanocortina/genética , Proteínas/metabolismo , Compostos de Sulfidrila , Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
8.
J Clin Invest ; 127(10): 3897-3912, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28920920

RESUMO

Peptide hormones are crucial regulators of many aspects of human physiology. Mutations that alter these signaling peptides are associated with physiological imbalances that underlie diseases. However, the conformational maturation of peptide hormone precursors (prohormones) in the ER remains largely unexplored. Here, we report that conformational maturation of proAVP, the precursor for the antidiuretic hormone arginine-vasopressin, within the ER requires the ER-associated degradation (ERAD) activity of the Sel1L-Hrd1 protein complex. Serum hyperosmolality induces expression of both ERAD components and proAVP in AVP-producing neurons. Mice with global or AVP neuron-specific ablation of Se1L-Hrd1 ERAD progressively developed polyuria and polydipsia, characteristics of diabetes insipidus. Mechanistically, we found that ERAD deficiency causes marked ER retention and aggregation of a large proportion of all proAVP protein. Further, we show that proAVP is an endogenous substrate of Sel1L-Hrd1 ERAD. The inability to clear misfolded proAVP with highly reactive cysteine thiols in the absence of Sel1L-Hrd1 ERAD causes proAVP to accumulate and participate in inappropriate intermolecular disulfide-bonded aggregates, promoted by the enzymatic activity of protein disulfide isomerase (PDI). This study highlights a pathway linking ERAD to prohormone conformational maturation in neuroendocrine cells, expanding the role of ERAD in providing a conducive ER environment for nascent proteins to reach proper conformation.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Células Neuroendócrinas/metabolismo , Proteólise , Vasopressinas/metabolismo , Equilíbrio Hidroeletrolítico , Animais , Retículo Endoplasmático/genética , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Transgênicos , Células Neuroendócrinas/patologia , Neurônios/metabolismo , Neurônios/patologia , Polidipsia/genética , Polidipsia/metabolismo , Polidipsia/patologia , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Vasopressinas/genética
9.
Cell Rep ; 16(10): 2630-2640, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27568564

RESUMO

Endoplasmic reticulum (ER)-associated degradation (ERAD) is a principal mechanism that targets ER-associated proteins for cytosolic proteasomal degradation. Here, our data demonstrate a critical role for the Sel1L-Hrd1 complex, the most conserved branch of ERAD, in early B cell development. Loss of Sel1L-Hrd1 ERAD in B cell precursors leads to a severe developmental block at the transition from large to small pre-B cells. Mechanistically, we show that Sel1L-Hrd1 ERAD selectively recognizes and targets the pre-B cell receptor (pre-BCR) for proteasomal degradation in a BiP-dependent manner. The pre-BCR complex accumulates both intracellularly and at the cell surface in Sel1L-deficient pre-B cells, leading to persistent pre-BCR signaling and pre-B cell proliferation. This study thus implicates ERAD mediated by Sel1L-Hrd1 as a key regulator of B cell development and reveals the molecular mechanism underpinning the transient nature of pre-BCR signaling.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Pontos de Checagem do Ciclo Celular , Degradação Associada com o Retículo Endoplasmático , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Antígenos CD19/metabolismo , Ciclo Celular , Tamanho Celular , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Endogâmicos C57BL , Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos B/patologia , Receptores de Antígenos de Linfócitos B , Especificidade por Substrato , Fator de Transcrição CHOP/metabolismo
10.
Nat Commun ; 7: 11748, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27272143

RESUMO

Mammalian chromosome replication starts from distinct sites; however, the principles governing initiation site selection are unclear because proteins essential for DNA replication do not exhibit sequence-specific DNA binding. Here we identify a replication-initiation determinant (RepID) protein that binds a subset of replication-initiation sites. A large fraction of RepID-binding sites share a common G-rich motif and exhibit elevated replication initiation. RepID is required for initiation of DNA replication from RepID-bound replication origins, including the origin at the human beta-globin (HBB) locus. At HBB, RepID is involved in an interaction between the replication origin (Rep-P) and the locus control region. RepID-depleted murine embryonic fibroblasts exhibit abnormal replication fork progression and fewer replication-initiation events. These observations are consistent with a model, suggesting that RepID facilitates replication initiation at a distinct group of human replication origins.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Mamíferos/metabolismo , Origem de Replicação , Animais , Sequência de Bases , Linhagem Celular , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Loci Gênicos , Genoma , Humanos , Região de Controle de Locus Gênico , Camundongos , Modelos Biológicos , Ligação Proteica
11.
Mol Biol Cell ; 27(3): 483-90, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26631554

RESUMO

Inflammatory bowel disease (IBD) is an incurable chronic idiopathic disease that drastically decreases quality of life. Endoplasmic reticulum (ER)-associated degradation (ERAD) is responsible for the clearance of misfolded proteins; however, its role in disease pathogenesis remains largely unexplored. Here we show that the expression of SEL1L and HRD1, the most conserved branch of mammalian ERAD, is significantly reduced in ileal Crohn's disease (CD). Consistent with this observation, laboratory mice with enterocyte-specific Sel1L deficiency (Sel1L(ΔIEC)) develop spontaneous enteritis and have increased susceptibility to Toxoplasma gondii-induced ileitis. This is associated with profound defects in Paneth cells and a disproportionate increase of Ruminococcus gnavus, a mucolytic bacterium with known association with CD. Surprisingly, whereas both ER stress sensor IRE1α and effector CHOP are activated in the small intestine of Sel1L(ΔIEC) mice, they are not solely responsible for ERAD deficiency-associated lesions seen in the small intestine. Thus our study points to a constitutive role of Sel1L-Hrd1 ERAD in epithelial cell biology and the pathogenesis of intestinal inflammation in CD.


Assuntos
Enterócitos/metabolismo , Proteínas/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose , Duodeno/metabolismo , Duodeno/patologia , Estresse do Retículo Endoplasmático , Degradação Associada com o Retículo Endoplasmático , Endorribonucleases/fisiologia , Enterite/metabolismo , Enterite/patologia , Feminino , Microbioma Gastrointestinal , Haploinsuficiência , Homeostase , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Celulas de Paneth/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Fator de Transcrição CHOP/fisiologia
12.
Endocrinology ; 157(1): 417-28, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26562262

RESUMO

Cells composing the mammary secretory compartment have evolved a high capacity to secrete not only proteins but also triglycerides and carbohydrates. This feature is illustrated by the mouse, which can secrete nearly twice its own weight in milk proteins, triglycerides and lactose over a short 20-day lactation. The coordination of synthesis and export of products in other secretory cells is orchestrated in part by the transcription factor X-box binding protein 1 (XBP1). To assess the role of XBP1 in mammary epithelial cells (MEC), we studied floxed XBP1 female mice lacking (wild type; WT) or expressing the Cre recombinase under the control of the ovine ß-lactoglobulin promoter (ΔXBP1(MEC)). Pregnant ΔXBP1(MEC) females had morphologically normal mammary development and gave birth to the same number of pups as WT mice. Their litters, however, suffered a weight gain deficit by lactation day 3 (L3)3 that grew to 80% by L14. ΔXBP1(MEC) dams had only modest changes in milk composition (-21% protein, +24% triglyceride) and in the expression of associated genes in isolated MEC. By L5, WT glands were fully occupied by dilated alveoli, whereas ΔXBP1(MEC) glands contained fewer, mostly unfilled alveoli and retained a prominent adipocyte population. The smaller epithelial compartment in ΔXBP1(MEC) glands was explained by lower MEC proliferation and increased apoptosis. Finally, endoplasmic reticulum ribbons were less abundant in ΔXBP1(MEC) at pregnancy day 18 and failed to increase in abundance by L5. Collectively, these results show that XBP1 is required for MEC population expansion during lactation and its ability to develop an elaborate endoplasmic reticulum compartment.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Lactação/metabolismo , Glândulas Mamárias Animais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose , Biomarcadores/metabolismo , Proliferação de Células , Cruzamentos Genéticos , Proteínas de Ligação a DNA/genética , Retículo Endoplasmático/ultraestrutura , Estresse do Retículo Endoplasmático , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Feminino , Lactose/biossíntese , Lactose/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/ultraestrutura , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Proteínas do Leite/biossíntese , Proteínas do Leite/metabolismo , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/genética , Triglicerídeos/biossíntese , Triglicerídeos/metabolismo , Proteína 1 de Ligação a X-Box
13.
Nat Cell Biol ; 17(12): 1546-55, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26551274

RESUMO

Endoplasmic reticulum (ER)-associated degradation (ERAD) represents a principle quality control mechanism to clear misfolded proteins in the ER; however, its physiological significance and the nature of endogenous ERAD substrates remain largely unexplored. Here we discover that IRE1α, the sensor of the unfolded protein response (UPR), is a bona fide substrate of the Sel1L-Hrd1 ERAD complex. ERAD-mediated IRE1α degradation occurs under basal conditions in a BiP-dependent manner, requires both the intramembrane hydrophilic residues of IRE1α and the lectin protein OS9, and is attenuated by ER stress. ERAD deficiency causes IRE1α protein stabilization, accumulation and mild activation both in vitro and in vivo. Although enterocyte-specific Sel1L-knockout mice (Sel1L(ΔIEC)) are viable and seem normal, they are highly susceptible to experimental colitis and inflammation-associated dysbiosis, in an IRE1α-dependent but CHOP-independent manner. Hence, Sel1L-Hrd1 ERAD serves a distinct, essential function in restraint of IRE1α signalling in vivo by managing its protein turnover.


Assuntos
Degradação Associada com o Retículo Endoplasmático/genética , Endorribonucleases/genética , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas/genética , Animais , Sequência de Bases , Western Blotting , Células Cultivadas , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases/metabolismo , Enterócitos/metabolismo , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lectinas/genética , Lectinas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/genética , Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
Development ; 141(15): 2939-49, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25053427

RESUMO

Insulinoma associated 1 (Insm1) plays an important role in regulating the development of cells in the central and peripheral nervous systems, olfactory epithelium and endocrine pancreas. To better define the role of Insm1 in pancreatic endocrine cell development we generated mice with an Insm1(GFPCre) reporter allele and used them to study Insm1-expressing and null populations. Endocrine progenitor cells lacking Insm1 were less differentiated and exhibited broad defects in hormone production, cell proliferation and cell migration. Embryos lacking Insm1 contained greater amounts of a non-coding Neurog3 mRNA splice variant and had fewer Neurog3/Insm1 co-expressing progenitor cells, suggesting that Insm1 positively regulates Neurog3. Moreover, endocrine progenitor cells that express either high or low levels of Pdx1, and thus may be biased towards the formation of specific cell lineages, exhibited cell type-specific differences in the genes regulated by Insm1. Analysis of the function of Ripply3, an Insm1-regulated gene enriched in the Pdx1-high cell population, revealed that it negatively regulates the proliferation of early endocrine cells. Taken together, these findings indicate that in developing pancreatic endocrine cells Insm1 promotes the transition from a ductal progenitor to a committed endocrine cell by repressing a progenitor cell program and activating genes essential for RNA splicing, cell migration, controlled cellular proliferation, vasculogenesis, extracellular matrix and hormone secretion.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/fisiologia , Células Endócrinas/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/fisiologia , Alelos , Processamento Alternativo , Animais , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Proliferação de Células , Separação Celular , Matriz Extracelular/metabolismo , Citometria de Fluxo , Redes Reguladoras de Genes , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Knockout , Pâncreas/embriologia , RNA/metabolismo , Splicing de RNA , Células-Tronco/citologia , Fatores de Tempo , Transcrição Gênica
15.
Cell Metab ; 20(3): 458-70, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25066055

RESUMO

Sel1L is an essential adaptor protein for the E3 ligase Hrd1 in the endoplasmic reticulum (ER)-associated degradation (ERAD), a universal quality-control system in the cell; but its physiological role remains unclear. Here we show that mice with adipocyte-specific Sel1L deficiency are resistant to diet-induced obesity and exhibit postprandial hypertriglyceridemia. Further analyses reveal that Sel1L is indispensable for the secretion of lipoprotein lipase (LPL), independent of its role in Hrd1-mediated ERAD and ER homeostasis. Sel1L physically interacts with and stabilizes the LPL maturation complex consisting of LPL and lipase maturation factor 1 (LMF1). In the absence of Sel1L, LPL is retained in the ER and forms protein aggregates, which are degraded primarily by autophagy. The Sel1L-mediated control of LPL secretion is also seen in other LPL-expressing cell types including cardiac myocytes and macrophages. Thus, our study reports a role of Sel1L in LPL secretion and systemic lipid metabolism.


Assuntos
Metabolismo dos Lipídeos , Lipase Lipoproteica/metabolismo , Proteínas/metabolismo , Adipócitos/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Degradação Associada com o Retículo Endoplasmático , Feminino , Deleção de Genes , Hiperglicemia/genética , Hiperglicemia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Lipase Lipoproteica/química , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Agregados Proteicos , Multimerização Proteica , Proteínas/genética
16.
Proc Natl Acad Sci U S A ; 111(5): E582-91, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24453213

RESUMO

Suppressor/Enhancer of Lin-12-like (Sel1L) is an adaptor protein for the E3 ligase hydroxymethylglutaryl reductase degradation protein 1 (Hrd1) involved in endoplasmic reticulum-associated degradation (ERAD). Sel1L's physiological importance in mammalian ERAD, however, remains to be established. Here, using the inducible Sel1L knockout mouse and cell models, we show that Sel1L is indispensable for Hrd1 stability, ER homeostasis, and survival. Acute loss of Sel1L leads to premature death in adult mice within 3 wk with profound pancreatic atrophy. Contrary to current belief, our data show that mammalian Sel1L is required for Hrd1 stability and ERAD function both in vitro and in vivo. Sel1L deficiency disturbs ER homeostasis, activates ER stress, attenuates translation, and promotes cell death. Serendipitously, using a biochemical approach coupled with mass spectrometry, we found that Sel1L deficiency causes the aggregation of both small and large ribosomal subunits. Thus, Sel1L is an indispensable component of the mammalian Hrd1 ERAD complex and ER homeostasis, which is essential for protein translation, pancreatic function, and cellular and organismal survival.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Homeostase , Mamíferos/metabolismo , Proteínas/metabolismo , Animais , Atrofia , Técnicas de Cultura de Células , Morte Celular , Proliferação de Células , Sobrevivência Celular , Retículo Endoplasmático/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Pâncreas Exócrino/anormalidades , Pâncreas Exócrino/metabolismo , Pâncreas Exócrino/patologia , Pâncreas Exócrino/ultraestrutura , Polirribossomos/metabolismo , Biossíntese de Proteínas , Estabilidade Proteica , Vesículas Secretórias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Resposta a Proteínas não Dobradas
17.
Cell Signal ; 25(2): 561-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23160004

RESUMO

Notch signaling is an evolutionarily conserved cell-cell communication mechanism involved in the regulation of cell proliferation, differentiation and fate decisions of mammalian cells. In the present study, we investigated the possible requirement for Notch signaling in the proliferation and differentiation of porcine satellite cells. We show that Notch1, 2 and 3 are expressed in cultured porcine satellite cells. Knock-down of NOTCH1, but not NOTCH2 and NOTCH3, decreases the proliferation of porcine satellite cells. In contrast, enhancement of NOTCH1 expression via treatment of porcine satellite cells with recombinant NF-κB increases the proliferation of porcine satellite cells. The alteration of porcine satellite cell proliferation is associated with significant changes in the expression of cell cycle related genes (cyclin B1, D1, D2, E1 and p21), myogenic regulatory factors (MyoD and myogenin) and the Notch effector Hes5. In addition, alteration of Notch1 expression in porcine satellite cells causes changes in the expression of GSK3ß-3. Taken together, these findings suggest that of the four notch-related genes, Notch1is likely to be required for regulating the proliferation and therefore the maintenance of porcine satellite cells in vivo, and do so through activation of the Notch effector gene Hes5.


Assuntos
Receptor Notch1/metabolismo , Células Satélites de Músculo Esquelético/citologia , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Proteína MyoD/metabolismo , Miogenina/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas Repressoras/metabolismo , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Sus scrofa , Proteínas Wnt/metabolismo
18.
Mol Cell Biochem ; 370(1-2): 221-30, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22875667

RESUMO

Porcine satellite cells represent an ideal model system for studying the cellular and molecular basis regulating myogenic stem cell proliferation and differentiation and for exploring the experimental conditions for myoblast transplantation. Here, we investigated the effects of mechano growth factor (MGF), a spliced variant of the IGF-1 gene, on porcine satellite cells. We show that MGF potently stimulated proliferation while inhibited differentiation of porcine satellite cells. MGF-treatment acutely down-regulates the expression of myogenic determination factor (MyoD) and the cyclin-dependent kinase inhibitor p21. MGF-treatment also markedly reduced the overall expression of cyclin B1 and key factors of the myogenic regulatory and myocyte enhancer families, including Myogenein and MEF2A. Taken together, the gene expression data from MGF-treated porcine satellite cells are in favor of a molecular model in which MGF inhibits porcine satellite cell differentiation by down-regulating either the activity or expression of MyoD, which, in turn, suppresses the expression of key genes required for cell cycle progression and differentiation, such as p21, Myogenin, and MEF2. Overall, our findings are in support of the previous suggestion that MGF may be used in vivo and in vitro to promote proliferation of myogenic stem cells to prevent and treat age-related muscle degenerative diseases.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/farmacologia , Desenvolvimento Muscular/genética , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo/genética , Humanos , Desenvolvimento Muscular/efeitos dos fármacos , Proteína MyoD/genética , Proteína MyoD/metabolismo , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Sus scrofa , Fatores de Transcrição/genética
19.
J Biol Chem ; 286(25): 22275-82, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21536682

RESUMO

Increasing evidence suggests that endoplasmic reticulum (ER) stress plays an important role in the pathogenesis of type 2 diabetes mellitus. SEL1L is an ER membrane protein that is highly expressed in the pancreatic islet and acinar cells. We have recently reported that a deficiency of SEL1L causes systemic ER stress and leads to embryonic lethality in mice. Here we show that mice with one functional allele of Sel1l (Sel1l(+/-)) are more susceptible to high fat diet (HFD)-induced hyperglycemia. Sel1l(+/-) mice have a markedly reduced ß-cell mass as a result of decreased ß-cell proliferation. Consequently, Sel1l(+/-) mice are severely glucose-intolerant and exhibit significantly retarded glucose-stimulated insulin secretion. Pancreatic islets from Sel1l(+/-) mice stimulated with a high concentration of glucose in vitro express significantly higher levels of unfolded protein response genes than those from wild-type control mice. Furthermore, dominant-negative interference of SEL1L function in insulinoma cell lines severely impairs, whereas overexpression of SEL1L efficiently improves protein secretion. Taken together, our results indicate that haploid insufficiency of SEL1L predispose mice to high fat diet-induced hyperglycemia. Our findings highlight a critical and previously unknown function for SEL1L in regulating adult ß-cell function and growth.


Assuntos
Gorduras na Dieta/efeitos adversos , Predisposição Genética para Doença/genética , Haploinsuficiência/genética , Hiperglicemia/induzido quimicamente , Hiperglicemia/genética , Proteínas/genética , Animais , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/genética , Intolerância à Glucose/patologia , Heterozigoto , Hiperglicemia/patologia , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/patologia , Desdobramento de Proteína
20.
J Biol Chem ; 286(21): 18708-19, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21454627

RESUMO

Murine SEL-1L (mSEL-1L) is a key component of the endoplasmic reticulum-associated degradation pathway. It is essential during development as revealed by the multi-organ dysfunction and in uterus lethality occurring in homozygous mSEL-1L-deficient mice. Here we show that mSEL-1L is highly expressed in pluripotent embryonic stem cells and multipotent neural stem cells (NSCs) but silenced in all mature neural derivatives (i.e. astrocytes, oligodendrocytes, and neurons) by mmu-miR-183. NSCs derived from homozygous mSEL-1L-deficient embryos (mSEL-1L(-/-) NSCs) fail to proliferate in vitro, show a drastic reduction of the Notch effector HES-5, and reveal a significant down-modulation of the early neural progenitor markers PAX-6 and OLIG-2, when compared with the wild type (mSEL-1L(+/+) NSCs) counterpart. Furthermore, these cells are almost completely deprived of the neural marker Nestin, display a significant decrease of SOX-2 expression, and rapidly undergo premature astrocytic commitment and apoptosis. The data suggest severe self-renewal defects occurring in these cells probably mediated by misregulation of the Notch signaling. The results reported here denote mSEL-1L as a primitive marker with a possible involvement in the regulation of neural progenitor stemness maintenance and lineage determination.


Assuntos
Antígenos de Diferenciação/metabolismo , Apoptose/fisiologia , Linhagem da Célula/fisiologia , Células-Tronco Multipotentes/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas/metabolismo , Animais , Antígenos de Diferenciação/genética , Astrócitos/citologia , Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Multipotentes/citologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Células-Tronco Neurais/citologia , Fator de Transcrição 2 de Oligodendrócitos , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Proteínas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA