Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38772709

RESUMO

Biomarkers are critical to the staging and diagnosis of type 1 diabetes (T1D). Functional biomarkers offer insights into T1D immunopathogenesis and are often revealed using "omics" approaches that integrate multiple measures to identify involved pathways and functions. Application of the omics biomarker discovery may enable personalized medicine approaches to circumvent the more recently appreciated heterogeneity of T1D progression and treatment. Use of omics to define functional biomarkers is still in its early years, yet findings to date emphasize the role of cytokine signaling and adaptive immunity in biomarkers of progression and response to therapy. Here, we share examples of the use of omics to define functional biomarkers focusing on two signatures, T-cell exhaustion and T-cell help, which have been associated with outcomes in both the natural history and treatment contexts.

2.
Sci Transl Med ; 16(746): eadn2404, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718135

RESUMO

CD4+CD25hiCD127lo/-FOXP3+ regulatory T cells (Tregs) play a key role in preventing autoimmunity. In autoimmune type 1 diabetes (T1D), adoptive transfer of autologous polyclonal Tregs has been shown to be safe in adults in phase 1 clinical trials. We explored factors contributing to efficacy of autologous polyclonal expanded Tregs (expTregs) in a randomized phase 2 multi-center, double-blind, clinical trial (Sanford/Lisata Therapeutics T-Rex phase 2 trial, ClinicalTrials.gov NCT02691247). One hundred ten treated children and adolescents with new-onset T1D were randomized 1:1:1 to high-dose (20 × 106 cells/kilogram) or low-dose (1 × 106 cells/kilogram) treatments or to matching placebo. Cytometry as well as bulk and single-cell RNA sequencing were performed on selected expTregs and peripheral blood samples from participants. The single doses of expTregs were safe but did not prevent decline in residual ß cell function over 1 year compared to placebo (P = 0.94 low dose, P = 0.21 high dose), regardless of age or baseline C-peptide. ExpTregs were highly activated and suppressive in vitro. A transient increase of activated memory Tregs was detectable 1 week after infusion in the high-dose cohort, suggesting effective transfer of expTregs. However, the in vitro fold expansion of expTregs varied across participants, even when accounting for age, and lower fold expansion and its associated gene signature were linked with better C-peptide preservation regardless of Treg dose. These results suggest that a single dose of polyclonal expTregs does not alter progression in T1D; instead, Treg quality may be an important factor.


Assuntos
Diabetes Mellitus Tipo 1 , Linfócitos T Reguladores , Humanos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Linfócitos T Reguladores/imunologia , Criança , Adolescente , Masculino , Feminino , Método Duplo-Cego , Pré-Escolar , Transplante Autólogo
3.
Clin Exp Immunol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693758

RESUMO

Peripheral blood mononuclear cell (PBMC) immunophenotyping is crucial in tracking activation, disease state, and response to therapy in human subjects. Many studies require shipping of blood from clinical sites to a laboratory for processing to PBMC, which can lead to delays that impact sample quality. We used an extensive cytometry by time-of-flight (CyTOF) immunophenotyping panel to analyze the impacts of delays to processing and distinct storage conditions on cell composition and quality of PBMC from seven adults across a range of ages, including two with rheumatoid arthritis. Two or more days delay to processing resulted in extensive red blood cell contamination and increased variability of cell counts. While total memory and naïve B and T cell populations were maintained, four days delay reduced frequencies of monocytes. Variation across all immune subsets increased with delays of up to seven days in processing. Unbiased clustering analysis to define more granular subsets confirmed changes in PBMC composition, including decreases of classical and non-classical monocytes, basophils, plasmacytoid dendritic cells, and follicular helper T cells, with each subset impacted at a distinct time of delay. Expression of activation markers and chemokine receptors changed by day two, with differential impacts across subsets and markers. Our data support existing recommendations to process PBMC within 36 hours of collection but provide guidance on appropriate immunophenotyping experiments with longer delays.

4.
Commun Med (Lond) ; 4(1): 66, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582818

RESUMO

BACKGROUND: Islet autoantibodies form the foundation for type 1 diabetes (T1D) diagnosis and staging, but heterogeneity exists in T1D development and presentation. We hypothesized that autoantibodies can identify heterogeneity before, at, and after T1D diagnosis, and in response to disease-modifying therapies. METHODS: We systematically reviewed PubMed and EMBASE databases (6/14/2022) assessing 10 years of original research examining relationships between autoantibodies and heterogeneity before, at, after diagnosis, and in response to disease-modifying therapies in individuals at-risk or within 1 year of T1D diagnosis. A critical appraisal checklist tool for cohort studies was modified and used for risk of bias assessment. RESULTS: Here we show that 152 studies that met extraction criteria most commonly characterized heterogeneity before diagnosis (91/152). Autoantibody type/target was most frequently examined, followed by autoantibody number. Recurring themes included correlations of autoantibody number, type, and titers with progression, differing phenotypes based on order of autoantibody seroconversion, and interactions with age and genetics. Only 44% specifically described autoantibody assay standardization program participation. CONCLUSIONS: Current evidence most strongly supports the application of autoantibody features to more precisely define T1D before diagnosis. Our findings support continued use of pre-clinical staging paradigms based on autoantibody number and suggest that additional autoantibody features, particularly in relation to age and genetic risk, could offer more precise stratification. To improve reproducibility and applicability of autoantibody-based precision medicine in T1D, we propose a methods checklist for islet autoantibody-based manuscripts which includes use of precision medicine MeSH terms and participation in autoantibody standardization workshops.


Islet autoantibodies are markers found in the blood when insulin-producing cells in the pancreas become damaged and can be used to predict future development of type 1 diabetes. We evaluated published literature to determine whether characteristics of islet antibodies (type, levels, numbers) could improve prediction and help understand differences in how individuals with type 1 diabetes respond to treatments. We found existing evidence shows that islet autoantibody type and number are most useful to predict disease progression before diagnosis. In addition, the age when islet autoantibodies first appear strongly influences rate of progression. These findings provide important information for patients and care providers on how islet autoantibodies can be used to understand future type 1 diabetes development and to identify individuals who have the potential to benefit from intervention or prevention therapy.

5.
Diabetologia ; 67(1): 27-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37782353

RESUMO

AIMS/HYPOTHESIS: We hypothesised that islet beta cell antigen presentation in the gut along with a tolerising cytokine would lead to antigen-specific tolerance in type 1 diabetes. We evaluated this in a parallel open-label Phase 1b study using oral AG019, food-grade Lactococcus lactis bacteria genetically modified to express human proinsulin and human IL-10, as a monotherapy and in a parallel, randomised, double-blind Phase 2a study using AG019 in combination with teplizumab. METHODS: Adults (18-42 years) and adolescents (12-17 years) with type 1 diabetes diagnosed within 150 days were enrolled, with documented evidence of at least one autoantibody and a stimulated peak C-peptide level >0.2 nmol/l. Participants were allocated to interventions using interactive response technology. We treated 42 people aged 12-42 years with recent-onset type 1 diabetes, 24 with Phase 1b monotherapy (open-label) and 18 with Phase 2a combination therapy. In the Phase 2a study, after treatment of the first two open-label participants, all people involved were blinded to group assignment, except for the Data Safety Monitoring Board members and the unblinded statistician. The primary endpoint was safety and tolerability based on the incidence of treatment-emergent adverse events, collected up to 6 months post treatment initiation. The secondary endpoints were pharmacokinetics, based on AG019 detection in blood and faeces, and pharmacodynamic activity. Metabolic and immune endpoints included stimulated C-peptide levels during a mixed meal tolerance test, HbA1c levels, insulin use, and antigen-specific CD4+ and CD8+ T cell responses using an activation-induced marker assay and pooled tetramers, respectively. RESULTS: Data from 24 Phase 1b participants and 18 Phase 2a participants were analysed. No serious adverse events were reported and none of the participants discontinued AG019 due to treatment-emergent adverse events. No systemic exposure to AG019 bacteria, proinsulin or human IL-10 was demonstrated. In AG019 monotherapy-treated adults, metabolic variables were stabilised up to 6 months (C-peptide, insulin use) or 12 months (HbA1c) post treatment initiation. In participants treated with AG019/teplizumab combination therapy, all measured metabolic variables stabilised or improved up to 12 months and CD8+ T cells with a partially exhausted phenotype were significantly increased at 6 months. Circulating preproinsulin-specific CD4+ and CD8+ T cells were detected before and after treatment, with a reduction in the frequency of preproinsulin-specific CD8+ T cells after treatment with monotherapy or combination therapy. CONCLUSIONS/INTERPRETATION: Oral delivery of AG019 was well tolerated and safe as monotherapy and in combination with teplizumab. AG019 was not shown to interfere with the safety profile of teplizumab and may have additional biological effects, including changes in preproinsulin-specific T cells. These preliminary data support continuing studies with this agent alone and in combination with teplizumab or other systemic immunotherapies in type 1 diabetes. TRIAL REGISTRATION: ClinicalTrials.gov NCT03751007, EudraCT 2017-002871-24 FUNDING: This study was funded by Precigen ActoBio.


Assuntos
Diabetes Mellitus Tipo 1 , Adulto , Adolescente , Humanos , Interleucina-10 , Peptídeo C , Linfócitos T CD8-Positivos/metabolismo , Proinsulina , Método Duplo-Cego
6.
Cell Rep Med ; 4(11): 101261, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37918404

RESUMO

In preclinical models, α-difluoromethylornithine (DFMO), an ornithine decarboxylase (ODC) inhibitor, delays the onset of type 1 diabetes (T1D) by reducing ß cell stress. However, the mechanism of DFMO action and its human tolerability remain unclear. In this study, we show that mice with ß cell ODC deletion are protected against toxin-induced diabetes, suggesting a cell-autonomous role of ODC during ß cell stress. In a randomized controlled trial (ClinicalTrials.gov: NCT02384889) involving 41 recent-onset T1D subjects (3:1 drug:placebo) over a 3-month treatment period with a 3-month follow-up, DFMO (125-1,000 mg/m2) is shown to meet its primary outcome of safety and tolerability. DFMO dose-dependently reduces urinary putrescine levels and, at higher doses, preserves C-peptide area under the curve without apparent immunomodulation. Transcriptomics and proteomics of DFMO-treated human islets exposed to cytokine stress reveal alterations in mRNA translation, nascent protein transport, and protein secretion. These findings suggest that DFMO may preserve ß cell function in T1D through islet cell-autonomous effects.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Inibidores da Ornitina Descarboxilase/farmacologia , Eflornitina/farmacologia , Eflornitina/uso terapêutico , Putrescina/metabolismo
7.
Clin Immunol ; 257: 109829, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37907122

RESUMO

Soon after diagnosis with type 1 diabetes (T1D), many patients experience a period of partial remission. A longer partial remission is associated with a better response to treatment, but the mechanism is not known. The frequency of CD4+CD25+CD127hi (127-hi) cells, a cell subset with an anti-inflammatory Th2 bias, correlates positively with length of partial remission. The purpose of this study was to further characterize the nature of the Th2 bias in 127-hi cells. Single cell RNA sequencing paired with TCR sequencing of sorted 127-hi memory cells identifies clonally expanded Th2 clusters in 127-hi cells from T1D, but not from healthy donors. The Th2 clusters express GATA3, GATA3-AS1, PTGDR2, IL17RB, IL4R and IL9R. The existence of 127-hi Th2 cell clonal expansion in T1D suggests that disease factors may induce clonal expansion of 127-hi Th2 cells that prolong partial remission and delay disease progression.


Assuntos
Diabetes Mellitus Tipo 1 , Células Th2 , Humanos , Diabetes Mellitus Tipo 1/genética
8.
Commun Med (Lond) ; 3(1): 130, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37794169

RESUMO

BACKGROUND: Type 1 diabetes (T1D) results from immune-mediated destruction of insulin-producing beta cells. Prevention efforts have focused on immune modulation and supporting beta cell health before or around diagnosis; however, heterogeneity in disease progression and therapy response has limited translation to clinical practice, highlighting the need for precision medicine approaches to T1D disease modification. METHODS: To understand the state of knowledge in this area, we performed a systematic review of randomized-controlled trials with ≥50 participants cataloged in PubMed or Embase from the past 25 years testing T1D disease-modifying therapies and/or identifying features linked to treatment response, analyzing bias using a Cochrane-risk-of-bias instrument. RESULTS: We identify and summarize 75 manuscripts, 15 describing 11 prevention trials for individuals with increased risk for T1D, and 60 describing treatments aimed at preventing beta cell loss at disease onset. Seventeen interventions, mostly immunotherapies, show benefit compared to placebo (only two prior to T1D onset). Fifty-seven studies employ precision analyses to assess features linked to treatment response. Age, beta cell function measures, and immune phenotypes are most frequently tested. However, analyses are typically not prespecified, with inconsistent methods of reporting, and tend to report positive findings. CONCLUSIONS: While the quality of prevention and intervention trials is overall high, the low quality of precision analyses makes it difficult to draw meaningful conclusions that inform clinical practice. To facilitate precision medicine approaches to T1D prevention, considerations for future precision studies include the incorporation of uniform outcome measures, reproducible biomarkers, and prespecified, fully powered precision analyses into future trial design.


Type 1 diabetes (T1D) is a condition that results from the destruction of a type of cell in the pancreas that produces the hormone insulin, leading to lifelong dependence on insulin injections. T1D prevention remains a challenging goal, largely due to the immense variability in disease processes and progression. Therapies tested to date in medical research settings (clinical trials) work only in a subset of individuals, highlighting the need for more tailored prevention approaches. We reviewed clinical trials of therapies targeting the disease process in T1D. While the overall quality of trials was high, studies testing individual features affecting responses to treatments were low. This review reveals an important need to carefully plan high-quality analyses of features that affect treatment response in T1D, to ensure that tailored approaches may one day be applied to clinical practice.

9.
Commun Biol ; 6(1): 988, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758901

RESUMO

Genome-wide association studies have identified numerous loci with allelic associations to Type 1 Diabetes (T1D) risk. Most disease-associated variants are enriched in regulatory sequences active in lymphoid cell types, suggesting that lymphocyte gene expression is altered in T1D. Here we assay gene expression between T1D cases and healthy controls in two autoimmunity-relevant lymphocyte cell types, memory CD4+/CD25+ regulatory T cells (Treg) and memory CD4+/CD25- T cells, using a splicing event-based approach to characterize tissue-specific transcriptomes. Limited differences in isoform usage between T1D cases and controls are observed in memory CD4+/CD25- T-cells. In Tregs, 402 genes demonstrate differences in isoform usage between cases and controls, particularly RNA recognition and splicing factor genes. Many of these genes are regulated by the variable inclusion of exons that can trigger nonsense mediated decay. Our results suggest that dysregulation of gene expression, through shifts in alternative splicing in Tregs, contributes to T1D pathophysiology.


Assuntos
Diabetes Mellitus Tipo 1 , Linfócitos T Reguladores , Humanos , Diabetes Mellitus Tipo 1/genética , Estudo de Associação Genômica Ampla , Isoformas de Proteínas/genética , Processamento Alternativo
10.
Diabetologia ; 66(12): 2283-2291, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37667106

RESUMO

AIMS/HYPOTHESIS: Tractable precision biomarkers to identify immunotherapy responders are lacking in type 1 diabetes. We hypothesised that proinsulin:C-peptide (PI:C) ratios, a readout of beta cell stress, could provide insight into type 1 diabetes progression and responses to immunotherapy. METHODS: In this post hoc analysis, proinsulin and C-peptide levels were determined in baseline serum samples from 63 participants with stage 2 type 1 diabetes in the longitudinal TrialNet Teplizumab Prevention Study (n=41 in the teplizumab arm; n=22 in the placebo arm). In addition, previously tested demographic, C-peptide, glucose and proinsulin data were used for the new data analyses. The ratio of intact (unprocessed) proinsulin to C-peptide was analysed and relationships with progression to stage 3 diabetes were investigated. RESULTS: Elevated baseline PI:C was strongly associated with more rapid progression of diabetes in both the placebo and teplizumab treatment groups, but teplizumab abrogated the impact of high pre-treatment PI:C on type 1 diabetes progression. Differential responses of drug treatment in those with high vs low PI:C ratios were independent of treatment effects of teplizumab on the PI:C ratio or on relevant immune cells. CONCLUSIONS/INTERPRETATION: High pre-treatment PI:C identified individuals with stage 2 type 1 diabetes who were exhibiting rapid progression to stage 3 disease and who displayed benefit from teplizumab treatment. These data suggest that readouts of active disease, such as PI:C ratio, could serve to identify optimal candidates or timing for type 1 diabetes disease-modifying therapies.


Assuntos
Diabetes Mellitus Tipo 1 , Proinsulina , Humanos , Peptídeo C , Anticorpos Monoclonais Humanizados/uso terapêutico , Insulina/metabolismo
11.
medRxiv ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37502867

RESUMO

Teplizumab has been approved for the delay of the onset of type 1 diabetes and may modulate new onset disease. We found that patients who were EBV positive at baseline had a more robust response to drug in two clinical trials and therefore postulated that latent virus has general effects in modifying immune responses. We compared the phenotypes, transcriptomes, and development of peripheral blood cells before and after teplizumab treatment. Higher number of Tregs and partially exhausted CD8 + T cells were found in EBV seropositive individuals at the baseline in the TN10 trial and AbATE trial. Single cell transcriptomics and functional assays identified downregulation of the T cell receptor and other signaling pathways before treatment. Impairments in function of adaptive immune cells were enhanced by teplizumab treatment in EBV seropositive individuals. Our data indicate that EBV can impair signaling pathways generally in immune cells, that broadly redirect cell differentiation.

12.
JCI Insight ; 8(16)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37432736

RESUMO

BACKGROUNDLow-dose anti-thymocyte globulin (ATG) transiently preserves C-peptide and lowers HbA1c in individuals with recent-onset type 1 diabetes (T1D); however, the mechanisms of action and features of the response remain unclear. Here, we characterized the post hoc immunological outcomes of ATG administration and their potential use as biomarkers of metabolic response to therapy (i.e., improved preservation of endogenous insulin production).METHODSWe assessed gene and protein expression, targeted gene methylation, and cytokine concentrations in peripheral blood following treatment with ATG (n = 29), ATG plus granulocyte colony-stimulating factor (ATG/G-CSF, n = 28), or placebo (n = 31).RESULTSTreatment with low-dose ATG preserved regulatory T cells (Tregs), as measured by stable methylation of FOXP3 Treg-specific demethylation region (TSDR) and increased proportions of CD4+FOXP3+ Tregs (P < 0.001) identified by flow cytometry. While treatment effects were consistent across participants, not all maintained C-peptide. Responders exhibited a transient rise in IL-6, IP-10, and TNF-α (P < 0.05 for all) 2 weeks after treatment and a durable CD4+ exhaustion phenotype (increased PD-1+KLRG1+CD57- on CD4+ T cells [P = 0.011] and PD1+CD4+ Temra MFI [P < 0.001] at 12 weeks, following ATG and ATG/G-CSF, respectively). ATG nonresponders displayed higher proportions of senescent T cells (at baseline and after treatment) and increased methylation of EOMES (i.e., less expression of this exhaustion marker).CONCLUSIONAltogether in these exploratory analyses, Th1 inflammation-associated serum and CD4+ exhaustion transcript and cellular phenotyping profiles may be useful for identifying signatures of clinical response to ATG in T1D.TRIAL REGISTRATIONClinicalTrials.gov NCT02215200.FUNDINGThe Leona M. and Harry B. Helmsley Charitable Trust (2019PG-T1D011), the NIH (R01 DK106191 Supplement, K08 DK128628), NIH TrialNet (U01 DK085461), and the NIH NIAID (P01 AI042288).


Assuntos
Soro Antilinfocitário , Diabetes Mellitus Tipo 1 , Humanos , Soro Antilinfocitário/uso terapêutico , Linfócitos T CD4-Positivos/metabolismo , Exaustão das Células T , Peptídeo C , Fator Estimulador de Colônias de Granulócitos/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
13.
medRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131690

RESUMO

Background: Type 1 diabetes (T1D) results from immune-mediated destruction of insulin-producing beta cells. Efforts to prevent T1D have focused on modulating immune responses and supporting beta cell health; however, heterogeneity in disease progression and responses to therapies have made these efforts difficult to translate to clinical practice, highlighting the need for precision medicine approaches to T1D prevention. Methods: To understand the current state of knowledge regarding precision approaches to T1D prevention, we performed a systematic review of randomized-controlled trials from the past 25 years testing disease-modifying therapies in T1D and/or identifying features linked to treatment response, analyzing bias using a Cochrane-risk-of-bias instrument. Results: We identified 75 manuscripts, 15 describing 11 prevention trials for individuals with increased risk for T1D, and 60 describing treatments aimed at preventing beta cell loss in individuals at disease onset. Seventeen agents tested, mostly immunotherapies, showed benefit compared to placebo (only two prior to T1D onset). Fifty-seven studies employed precision analyses to assess features linked to treatment response. Age, measures of beta cell function and immune phenotypes were most frequently tested. However, analyses were typically not prespecified, with inconsistent methods reporting, and tended to report positive findings. Conclusions: While the quality of prevention and intervention trials was overall high, low quality of precision analyses made it difficult to draw meaningful conclusions that inform clinical practice. Thus, prespecified precision analyses should be incorporated into the design of future studies and reported in full to facilitate precision medicine approaches to T1D prevention. Plain Language Summary: Type 1 diabetes (T1D) results from the destruction of insulin-producing cells in the pancreas, necessitating lifelong insulin dependence. T1D prevention remains an elusive goal, largely due to immense variability in disease progression. Agents tested to date in clinical trials work in a subset of individuals, highlighting the need for precision medicine approaches to prevention. We systematically reviewed clinical trials of disease-modifying therapy in T1D. While age, measures of beta cell function, and immune phenotypes were most commonly identified as factors that influenced treatment response, the overall quality of these studies was low. This review reveals an important need to proactively design clinical trials with well-defined analyses to ensure that results can be interpreted and applied to clinical practice.

14.
Diabetes Care ; 46(5): 1005-1013, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36920087

RESUMO

OBJECTIVE: Previous studies showed that inhibiting lymphocyte costimulation reduces declining ß-cell function in individuals newly diagnosed with type 1 diabetes. We tested whether abatacept would delay or prevent progression of type 1 diabetes from normal glucose tolerance (NGT) to abnormal glucose tolerance (AGT) or to diabetes and the effects of treatment on immune and metabolic responses. RESEARCH DESIGN AND METHODS: We conducted a phase 2, randomized, placebo-controlled, double-masked trial of abatacept in antibody-positive participants with NGT who received monthly abatacept/placebo infusions for 12 months. The end point was AGT or diabetes, assessed by oral glucose tolerance tests. RESULTS: A total of 101 participants received abatacept and 111 placebo. Of these, 81 (35 abatacept and 46 placebo) met the end point of AGT or type 1 diabetes diagnosis (hazard ratio 0.702; 95% CI 0.452, 1.09; P = 0.11) The C-peptide responses to oral glucose tolerance tests were higher in the abatacept arm (P < 0.03). Abatacept reduced the frequency of inducible T-cell costimulatory (ICOS)+ PD1+ T-follicular helper (Tfh) cells during treatment (P < 0.0001), increased naive CD4+ T cells, and also reduced the frequency of CD4+ regulatory T cells (Tregs) from the baseline (P = 0.0067). Twelve months after treatment, the frequency of ICOS+ Tfh, naive CD4+ T cells, and Tregs returned to baseline. CONCLUSIONS: Although abatacept treatment for 1 year did not significantly delay progression to glucose intolerance in at-risk individuals, it impacted immune cell subsets and preserved insulin secretion, suggesting that costimulation blockade may modify progression of type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Abatacepte/uso terapêutico , Abatacepte/farmacologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Imunossupressores , Linfócitos T Reguladores , Glucose/uso terapêutico
15.
Clin Exp Immunol ; 210(2): 105-113, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35980300

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease resulting in the destruction of the insulin-producing pancreatic beta cells. Disease progression occurs along a trajectory from genetic risk, the development of islet autoantibodies, and autoreactive T cells ultimately progressing to clinical disease. Natural history studies and mechanistic studies linked to clinical trials have provided insight into the role of the immune system in disease pathogenesis. Here, we review our current understanding of the underlying etiology of T1D, focusing on the immune cell types that have been implicated in progression from pre-symptomatic T1D to clinical diagnosis and established disease. This knowledge has been foundational for the development of immunotherapies aimed at the prevention and treatment of T1D.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Insulina/uso terapêutico , Insulina/metabolismo , Autoanticorpos , Autoimunidade/genética
16.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L14-L26, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35608267

RESUMO

Critically ill patients manifest many of the same immune features seen in coronavirus disease 2019 (COVID-19), including both "cytokine storm" and "immune suppression." However, direct comparisons of molecular and cellular profiles between contemporaneously enrolled critically ill patients with and without severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are limited. We sought to identify immune signatures specifically enriched in critically ill patients with COVID-19 compared with patients without COVID-19. We enrolled a multisite prospective cohort of patients admitted under suspicion for COVID-19, who were then determined to be SARS-CoV-2-positive (n = 204) or -negative (n = 122). SARS-CoV-2-positive patients had higher plasma levels of CXCL10, sPD-L1, IFN-γ, CCL26, C-reactive protein (CRP), and TNF-α relative to SARS-CoV-2-negative patients adjusting for demographics and severity of illness (Bonferroni P value < 0.05). In contrast, the levels of IL-6, IL-8, IL-10, and IL-17A were not significantly different between the two groups. In SARS-CoV-2-positive patients, higher plasma levels of sPD-L1 and TNF-α were associated with fewer ventilator-free days (VFDs) and higher mortality rates (Bonferroni P value < 0.05). Lymphocyte chemoattractants such as CCL17 were associated with more severe respiratory failure in SARS-CoV-2-positive patients, but less severe respiratory failure in SARS-CoV-2-negative patients (P value for interaction < 0.01). Circulating T cells and monocytes from SARS-CoV-2-positive subjects were hyporesponsive to in vitro stimulation compared with SARS-CoV-2-negative subjects. Critically ill SARS-CoV-2-positive patients exhibit an immune signature of high interferon-induced lymphocyte chemoattractants (e.g., CXCL10 and CCL17) and immune cell hyporesponsiveness when directly compared with SARS-CoV-2-negative patients. This suggests a specific role for T-cell migration coupled with an immune-checkpoint regulatory response in COVID-19-related critical illness.


Assuntos
COVID-19 , Insuficiência Respiratória , Antígeno B7-H1 , Quimiocinas , Estado Terminal , Humanos , Estudos Prospectivos , SARS-CoV-2 , Fator de Necrose Tumoral alfa
17.
Eur J Immunol ; 52(3): 372-388, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35025103

RESUMO

Cytometric immunophenotyping is a powerful tool to discover and implement T-cell biomarkers of type 1 diabetes (T1D) progression and response to clinical therapy. Although many discovery-based T-cell biomarkers have been described, to date, no such markers have been widely adopted in standard practice. The heterogeneous nature of T1D and lack of standardized assays and experimental design across studies is a major barrier to the broader adoption of T-cell immunophenotyping assays. There is an unmet need to harmonize the design of immunophenotyping assays, including those that measure antigen-agnostic cell populations, such that data collected from different clinical trial sites and T1D cohorts are comparable, yet account for cohort-specific features and different drug mechanisms of action. In these Guidelines, we aim to provide expert advice on how to unify aspects of study design and practice. We provide recommendations for defining cohorts, method implementation, as well as tools for data analysis and reporting by highlighting and building on selected successes. Harmonization of cytometry-based T-cell assays will allow researchers to better integrate findings across trials, ultimately enabling the identification and validation of biomarkers of disease progression and treatment response in T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Biomarcadores/análise , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/terapia , Citometria de Fluxo/métodos , Humanos , Imunofenotipagem , Linfócitos T
18.
Sci Transl Med ; 14(627): eabi4888, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35020411

RESUMO

Individuals with Down syndrome show cellular and clinical features of dysregulated aging of the immune system, including a shift from naïve to memory T cells and increased incidence of autoimmunity. However, a quantitative understanding of how various immune compartments change with age in Down syndrome remains lacking. Here, we performed deep immunophenotyping of a cohort of individuals with Down syndrome across the life span, selecting for autoimmunity-free individuals. We simultaneously interrogated age- and sex-matched healthy controls and people with type 1 diabetes as a representative autoimmune disease. We built an analytical software, IMPACD (Iterative Machine-assisted Permutational Analysis of Cytometry Data), that enabled us to rapidly identify many features of immune dysregulation in Down syndrome shared with other autoimmune diseases. We found quantitative and qualitative dysregulation of naïve CD4+ and CD8+ T cells in individuals with Down syndrome and identified interleukin-6 as a candidate driver of some of these changes, thus extending the consideration of immunopathologic cytokines in Down syndrome beyond interferons. We used immune cellular composition to generate three linear models of aging (immune clocks) trained on control participants. All three immune clocks demonstrated advanced immune aging in individuals with Down syndrome. One of these clocks, informed by Down syndrome­relevant biology, also showed advanced immune aging in individuals with type 1 diabetes. Orthologous RNA sequencing­derived immune clocks also demonstrated advanced immune aging in individuals with Down syndrome. Together, our findings demonstrate an approach to studying immune aging in Down syndrome that may have implications in other autoimmune diseases.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Síndrome de Down , Envelhecimento , Autoimunidade/genética , Linfócitos T CD8-Positivos , Síndrome de Down/genética , Humanos , Imunofenotipagem
19.
Immunother Adv ; 2(1): ltab022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35072168

RESUMO

OBJECTIVES: We assessed the safety of ustekinumab (a monoclonal antibody used in psoriasis to target the IL-12 and IL-23 pathways) in a small cohort of recent-onset (<100 days of diagnosis) adults with type 1 diabetes (T1D) by conducting a pilot open-label dose-finding and mechanistic study (NCT02117765) at the University of British Columbia. METHODS: We sequentially enrolled 20 participants into four subcutaneous dosing cohorts: (i) 45 mg loading weeks 0/4/16, (ii) 45 mg maintenance weeks 0/4/16/28/40, (iii) 90 mg loading weeks 0/4/16, and (iv) 90 mg maintenance weeks 0/4/16/28/40. The primary endpoint was safety as assessed by an independent data and safety monitoring board (DSMB) but we also measured mixed meal tolerance test C-peptide, insulin use/kg, and HbA1c. Immunophenotyping was performed to assess immune cell subsets and islet antigen-specific T cell responses. RESULTS: Although several adverse events were reported, only two (bacterial vaginosis and hallucinations) were thought to be possibly related to drug administration by the study investigators. At 1 year, the 90 mg maintenance dosing cohort had the smallest mean decline in C-peptide area under the curve (AUC) (0.1 pmol/ml). Immunophenotyping showed that ustekinumab reduced the percentage of circulating Th17, Th1, and Th17.1 cells and proinsulin-specific T cells that secreted IFN-γ and IL-17A. CONCLUSION: Ustekinumab was deemed safe to progress to efficacy studies by the DSMB at doses used to treat psoriasis in adults with T1D. A 90 mg maintenance dosing schedule reduced proinsulin-specific IFN-γ and IL-17A-producing T cells. Further studies are warranted to determine if ustekinumab can prevent C-peptide AUC decline and induce a clinical response.

20.
Crit Care Med ; 50(3): e284-e293, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34593707

RESUMO

OBJECTIVES: Multiple organ failure in critically ill patients is associated with poor prognosis, but biomarkers contributory to pathogenesis are unknown. Previous studies support a role for Fas cell surface death receptor (Fas)-mediated apoptosis in organ dysfunction. Our objectives were to test for associations between soluble Fas and multiple organ failure, identify protein quantitative trait loci, and determine associations between genetic variants and multiple organ failure. DESIGN: Retrospective observational cohort study. SETTING: Four academic ICUs at U.S. hospitals. PATIENTS: Genetic analyses were completed in a discovery (n = 1,589) and validation set (n = 863). Fas gene expression and flow cytometry studies were completed in outpatient research participants (n = 250). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: In discovery and validation sets of critically ill patients, we tested for associations between enrollment plasma soluble Fas concentrations and Sequential Organ Failure Assessment score on day 3. We conducted a genome-wide association study of plasma soluble Fas (discovery n = 1,042) and carried forward a single nucleotide variant in the FAS gene, rs982764, for validation (n = 863). We further tested whether the single nucleotide variant in FAS (rs982764) was associated with Sequential Organ Failure Assessment score, FAS transcriptional isoforms, and Fas cell surface expression. Higher plasma soluble Fas was associated with higher day 3 Sequential Organ Failure Assessment scores in both the discovery (ß = 4.07; p < 0.001) and validation (ß = 6.96; p < 0.001) sets. A single nucleotide variant in FAS (rs982764G) was associated with lower plasma soluble Fas concentrations and lower day 3 Sequential Organ Failure Assessment score in meta-analysis (-0.21; p = 0.02). Single nucleotide variant rs982764G was also associated with a lower relative expression of the transcript for soluble as opposed to transmembrane Fas and higher cell surface expression of Fas on CD4+ T cells. CONCLUSIONS: We found that single nucleotide variant rs982764G was associated with lower plasma soluble Fas concentrations in a discovery and validation population, and single nucleotide variant rs982764G was also associated with lower organ dysfunction on day 3. These findings support further study of the Fas pathway as a potential mediator of organ dysfunction in critically ill patients.


Assuntos
Estado Terminal/epidemiologia , Insuficiência de Múltiplos Órgãos/epidemiologia , Receptor fas/genética , Adulto , Idoso , Apoptose , Biomarcadores , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/sangue , Escores de Disfunção Orgânica , Polimorfismo de Nucleotídeo Único , Receptor fas/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA