Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 14(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35889757

RESUMO

Individuals with suspected non-celiac wheat sensitivity (NCWS) often report better tolerance of spelt (Triticum aestivum ssp. spelta) compared to wheat (Triticum aestivum ssp. aestivum) bakery products. This experience has neither been validated nor explained on a molecular level. Therefore, we performed blinded wheat and spelt bread challenge in this patient group. Twenty-four adults with a history of NCWS but suspected spelt tolerance were challenged in a single-blinded crossover design over six weeks with six different study breads each at 300 g per day for 4 days followed by a washout phase of 3 days. Study breads comprised spelt and wheat breads made either after a traditional (T) or a current (C) recipe, resulting in four bread types plus a gluten-free bread with 1.5% added oligosaccharides (+FODMAP) and a gluten-free bread with 5% added wheat gluten (+Gluten). The main outcome parameter was the Irritable Bowel Syndrome-Severity Scoring System, which was higher than self-estimated by the participants after spelt bread consumption (p = 0.002 for T; p = 0.028 for C) and lower for wheat bread (p = 0.052 for T; p = 0.007 for C), resulting in no difference between wheat and spelt bread tolerance. The +FODMAP bread was better tolerated than both T breads (p = 0.003 for spelt; p = 0.068 for wheat) and equally well tolerated as both C breads and +Gluten breads after normalization to the washout scores. Neither signs of inflammation nor markers for intestinal barrier integrity were influenced. Our data do not confirm, on an objective basis, the differences in expected symptoms resulting from wheat and spelt products, suggesting a strong nocebo effect for wheat and a placebo effect for spelt.


Assuntos
Síndrome do Intestino Irritável , Hipersensibilidade a Trigo , Adulto , Pão , Glutens , Humanos , Triticum
2.
Int J Mol Sci ; 21(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936286

RESUMO

By selecting for prostrate growth habit of the juvenile phase of the cycle, durum wheat cultivars could be developed with improved competitive ability against weeds, and better soil coverage to reduce the soil water lost by evaporation. A panel of 184 durum wheat (Triticum turgidum subsp. durum) genotypes, previously genotyped with DArT-seq markers, was used to perform association mapping analysis of prostrate/erect growth habit trait and to identify candidate genes. Phenotypic data of plant growth habit were recorded during three consecutive growing seasons (2014-2016), two different growth conditions (field trial and greenhouse) and two sowing periods (autumn and spring). Genome-wide association study revealed significant marker-trait associations, twelve of which were specific for a single environment/year, 4 consistent in two environments, and two MTAs for the LSmeans were identified across all environments, on chromosomes 2B and 5A. The co-localization of some MTAs identified in this study with known vernalization and photoperiod genes demonstrated that the sensitivity to vernalization and photoperiod response are actually not only key components of spring/winter growth habit, but they play also an important role in defining the magnitude of the tiller angle during the tillering stage. Many zinc-finger transcription factors, such as C2H2 or CCCH-domain zinc finger proteins, known to be involved in plant growth habit and in leaf angle regulation were found as among the most likely candidate genes. The highest numbers of candidate genes putatively related to the trait were found on chromosomes 3A, 4B, 5A and 6A. Moreover, a bioinformatic approach has been considered to search for functional ortholog genes in wheat by using the sequence of rice and barley tiller angle-related genes. The information generated could be used to improve the understanding of the mechanisms that regulate the prostrate/erect growth habit in wheat and the adaptive potential of durum wheat under resource-limited environmental conditions.


Assuntos
Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Estações do Ano , Triticum/crescimento & desenvolvimento
3.
Theor Appl Genet ; 125(4): 707-13, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22481121

RESUMO

Estimating marker effects based on routinely generated phenotypic data of breeding programs is a cost-effective strategy to implement genomic selection. Truncation selection in breeding populations, however, could have a strong impact on the accuracy to predict genomic breeding values. The main objective of our study was to investigate the influence of phenotypic selection on the accuracy and bias of genomic selection. We used experimental data of 788 testcross progenies from an elite maize breeding program. The testcross progenies were evaluated in unreplicated field trials in ten environments and fingerprinted with 857 SNP markers. Random regression best linear unbiased prediction method was used in combination with fivefold cross-validation based on genotypic sampling. We observed a substantial loss in the accuracy to predict genomic breeding values in unidirectional selected populations. In contrast, estimating marker effects based on bidirectional selected populations led to only a marginal decrease in the prediction accuracy of genomic breeding values. We concluded that bidirectional selection is a valuable approach to efficiently implement genomic selection in applied plant breeding programs.


Assuntos
Genoma de Planta/genética , Técnicas de Genotipagem/métodos , Seleção Genética , Zea mays/genética , Viés , Cruzamento , Genética Populacional , Genótipo
4.
Theor Appl Genet ; 124(4): 769-76, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22075809

RESUMO

Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3-4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.


Assuntos
Cruzamento , Genômica , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , Seleção Genética , Zea mays/genética , Europa (Continente) , Genes de Plantas , Genótipo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA