Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 1676, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374211

RESUMO

Type III solar radio bursts are the Sun's most intense and frequent nonthermal radio emissions. They involve two critical problems in astrophysics, plasma physics, and space physics: how collective processes produce nonthermal radiation and how magnetic reconnection occurs and changes magnetic energy into kinetic energy. Here magnetic reconnection events are identified definitively in Solar Dynamics Observatory UV-EUV data, with strong upward and downward pairs of jets, current sheets, and cusp-like geometries on top of time-varying magnetic loops, and strong outflows along pairs of open magnetic field lines. Type III bursts imaged by the Murchison Widefield Array and detected by the Learmonth radiospectrograph and STEREO B spacecraft are demonstrated to be in very good temporal and spatial coincidence with specific reconnection events and with bursts of X-rays detected by the RHESSI spacecraft. The reconnection sites are low, near heights of 5-10 Mm. These images and event timings provide the long-desired direct evidence that semi-relativistic electrons energized in magnetic reconnection regions produce type III radio bursts. Not all the observed reconnection events produce X-ray events or coronal or interplanetary type III bursts; thus different special conditions exist for electrons leaving reconnection regions to produce observable radio, EUV, UV, and X-ray bursts.

2.
Science ; 224(4644): 14-21, 1984 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17783499

RESUMO

For 10 months the Infrared Astronomical Satellite (IRAS) provided astronomers with what might be termed their first view of the infrared sky on a clear, dark night. Without IRAS, atmospheric absorption and the thermal emission from both the atmosphere and Earthbound telescopes make the task of the infrared astronomer comparable to what an optical astronomer would face if required to work only on cloudy afternoons. IRAS observations are serving astronomers in the same manner as the photographic plates of the Palomar Observatory Sky Survey; just as the optical survey has been used by all astronomers for over three decades, as a source of quantitative information about the sky and as a "roadmap" for future observations, the results of IRAS will be studied for years to come. IRAS has demonstrated the power of infrared astronomy from space. Already, from a brief look at a miniscule fraction of the data available, we have learned much about the solar system, about nearby stars, about the Galaxy as a whole and about distant extragalactic systems. Comets are much dustier than previously thought. Solid particles, presumably the remnants of the star-formation process, orbit around Vega and other stars and may provide the raw material for planetary systems. Emission from cool interstellar material has been traced throughout the Galaxy all the way to the galactic poles. Both the clumpiness and breadth of the distribution of this material were previously unsuspected. The far-infrared sky away from the galactic plane has been found to be dominated by spiral galaxies, some of which emit more than 50 percent and as much as 98 percent of their energy in the infrared-an exciting and surprising revelation. The IRAS mission is clearly the pathfinder for future missions that, to a large extent, will be devoted to the discoveries revealed by IRAS.

3.
Science ; 210(4473): 1015-7, 1980 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17797493

RESUMO

Observations of Io in eclipse demonstrate conclusively that Io emits substantial amounts of radiation at 4.8 and 3.8 micrometers and a measurable amount at 2.2 micrometers. Color temperatures derived from the observations fit blackbody emission at 560 K. The required source area to yield the observed 4.8-micrometer flux is approximately 5 x 10(-5) of the disk of Io and is most likely comprised of small hot spots in the vicinity of the volcanoes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA