Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Genom Med ; 9(1): 18, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429302

RESUMO

CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.

2.
Sci Rep ; 13(1): 13204, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580336

RESUMO

Congenital renal tract malformations (RTMs) are the major cause of severe kidney failure in children. Studies to date have identified defined genetic causes for only a minority of human RTMs. While some RTMs may be caused by poorly defined environmental perturbations affecting organogenesis, it is likely that numerous causative genetic variants have yet to be identified. Unfortunately, the speed of discovering further genetic causes for RTMs is limited by challenges in prioritising candidate genes harbouring sequence variants. Here, we exploited the computer-based artificial intelligence methodology of supervised machine learning to identify genes with a high probability of being involved in renal development. These genes, when mutated, are promising candidates for causing RTMs. With this methodology, the machine learning classifier determines which attributes are common to renal development genes and identifies genes possessing these attributes. Here we report the validation of an RTM gene classifier and provide predictions of the RTM association status for all protein-coding genes in the mouse genome. Overall, our predictions, whilst not definitive, can inform the prioritisation of genes when evaluating patient sequence data for genetic diagnosis. This knowledge of renal developmental genes will accelerate the processes of reaching a genetic diagnosis for patients born with RTMs.


Assuntos
Inteligência Artificial , Sistema Urinário , Criança , Humanos , Camundongos , Animais , Rim/anormalidades , Sistema Urinário/anormalidades , Aprendizado de Máquina
3.
Kidney Int Rep ; 8(7): 1417-1429, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37441484

RESUMO

Introduction: Urofacial, or Ochoa, syndrome (UFS) is an autosomal recessive disease featuring a dyssynergic bladder with detrusor smooth muscle contracting against an undilated outflow tract. It also features an abnormal grimace. Half of individuals with UFS carry biallelic variants in HPSE2, whereas other rare families carry variants in LRIG2.LRIG2 is immunodetected in pelvic ganglia sending autonomic axons into the bladder. Moreover, Lrig2 mutant mice have abnormal urination and abnormally patterned bladder nerves. We hypothesized that peripheral neurogenic defects underlie LRIG2-associated bladder dysfunction. Methods: We describe a new family with LRIG2-associated UFS and studied Lrig2 homozygous mutant mice with ex vivo physiological analyses. Results: The index case presented antenatally with urinary tract (UT) dilatation, and postnatally had urosepsis and functional bladder outlet obstruction. He had the grimace that, together with UT disease, characterizes UFS. Although HPSE2 sequencing was normal, he carried a homozygous, predicted pathogenic, LRIG2 stop variant (c.1939C>T; p.Arg647∗). Lrig2 mutant mice had enlarged bladders. Ex vivo physiology experiments showed neurogenic smooth muscle relaxation defects in the outflow tract, containing the urethra adjoining the bladder, and in detrusor contractility. Moreover, there were nuanced differences in physiological outflow tract defects between the sexes. Conclusion: Putting this family in the context of all reported UT disease-associated LRIG2 variants, the full UFS phenotype occurs with biallelic stop or frameshift variants, but missense variants lead to bladder-limited disease. Our murine observations support the hypothesis that UFS is a genetic autonomic neuropathy of the bladder affecting outflow tract and bladder body function.

4.
Elife ; 112022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36124557

RESUMO

Posterior urethral valves (PUV) are the commonest cause of end-stage renal disease in children, but the genetic architecture of this rare disorder remains unknown. We performed a sequencing-based genome-wide association study (seqGWAS) in 132 unrelated male PUV cases and 23,727 controls of diverse ancestry, identifying statistically significant associations with common variants at 12q24.21 (p=7.8 × 10-12; OR 0.4) and rare variants at 6p21.1 (p=2.0 × 10-8; OR 7.2), that were replicated in an independent European cohort of 395 cases and 4151 controls. Fine mapping and functional genomic data mapped these loci to the transcription factor TBX5 and planar cell polarity gene PTK7, respectively, the encoded proteins of which were detected in the developing urinary tract of human embryos. We also observed enrichment of rare structural variation intersecting with candidate cis-regulatory elements, particularly inversions predicted to affect chromatin looping (p=3.1 × 10-5). These findings represent the first robust genetic associations of PUV, providing novel insights into the underlying biology of this poorly understood disorder and demonstrate how a diverse ancestry seqGWAS can be used for disease locus discovery in a rare disease.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas com Domínio T/genética , Sistema Urinário , Moléculas de Adesão Celular/genética , Criança , Cromatina , Humanos , Masculino , Receptores Proteína Tirosina Quinases/genética , Fatores de Transcrição/genética
5.
Front Genet ; 13: 896125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812751

RESUMO

Urofacial (also called Ochoa) syndrome (UFS) is an autosomal recessive congenital disorder of the urinary bladder featuring voiding dysfunction and a grimace upon smiling. Biallelic variants in HPSE2, coding for the secreted protein heparanase-2, are described in around half of families genetically studied. Hpse2 mutant mice have aberrant bladder nerves. We sought to expand the genotypic spectrum of UFS and make insights into its pathobiology. Sanger sequencing, next generation sequencing and microarray analysis were performed in four previously unreported families with urinary tract disease and grimacing. In one, the proband had kidney failure and was homozygous for the previously described pathogenic variant c.429T>A, p.(Tyr143*). Three other families each carried a different novel HPSE2 variant. One had homozygous triplication of exons 8 and 9; another had homozygous deletion of exon 4; and another carried a novel c.419C>G variant encoding the missense p.Pro140Arg in trans with c.1099-1G>A, a previously reported pathogenic splice variant. Expressing the missense heparanase-2 variant in vitro showed that it was secreted as normal, suggesting that 140Arg has aberrant functionality after secretion. Bladder autonomic neurons emanate from pelvic ganglia where resident neural cell bodies derive from migrating neural crest cells. We demonstrated that, in normal human embryos, neuronal precursors near the developing hindgut and lower urinary tract were positive for both heparanase-2 and leucine rich repeats and immunoglobulin like domains 2 (LRIG2). Indeed, biallelic variants of LRIG2 have been implicated in rare UFS families. The study expands the genotypic spectrum in HPSE2 in UFS and supports a developmental neuronal pathobiology.

6.
J Pediatr Urol ; 18(3): 362.e1-362.e8, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35491304

RESUMO

INTRODUCTION: Bladder exstrophy-epispadias complex (BEEC) comprises a spectrum of anterior midline congenital malformations, involving the lower urinary tract. BEEC is usually sporadic, but families with more than one affected member have been reported, and a twin concordance study supported a genetic contribution to pathogenesis. Moreover, diverse chromosomal aberrations have been reported in a small subset of individuals with BEEC. The commonest are 22q11.2 microduplications, identified in approximately 3% of BEEC index cases. OBJECTIVES: We aimed to refine the chromosome 22q11.2 locus, and to determine whether the encompassed genes are expressed in normal developing and mature human urinary bladders. RESULTS: Using DNA from an individual with CBE, the 22q11.2 duplicated locus was refined by identification of a maternally inherited 314 kb duplication (chr22:21,147,293-21,461,017), as depicted in this image. Moreover, the eight protein coding genes within the locus were found to be expressed during normal developing and mature bladders. To determine whether duplications in any of these individual genes were associated with CBE, we undertook copy number analyses in 115 individuals with CBE without duplications of the whole locus. No duplications of individual genes were found. DISCUSSION: The current study has refined the 22q11.2 locus associated with BEEC and has shown that the eight protein coding genes are expressed in human bladders both during antenatal development and postnatally. Nevertheless, the precise biological explanation as to why duplication of the phenocritical region of 22q11 confers increased susceptibility to BEEC remains to be determined. The fact that individuals with CBE without duplications of the whole locus also lacked duplication of any of the individual genes suggests that in individuals with BEEC and duplication of the 22q11.2 locus altered dosage of more than one gene may be important in BEEC etiology. CONCLUSIONS: The study has refined the 22q11.2 locus associated with BEEC and has shown that the eight protein coding genes within this locus are expressed in human bladders.


Assuntos
Extrofia Vesical , Epispadia , Extrofia Vesical/genética , Extrofia Vesical/patologia , Cromossomos/metabolismo , Epispadia/genética , Epispadia/patologia , Feminino , Humanos , Gravidez , Bexiga Urinária/anormalidades
7.
Bio Protoc ; 11(17): e4150, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34604455

RESUMO

MicroRNAs are small RNAs that negatively regulate gene expression and play an important role in fine-tuning molecular pathways during development. There is increasing interest in studying their function in the kidney, but the majority of studies to date use kidney cell lines and assess the total amounts of miRNAs of interest either by qPCR or by high-throughput methods such as next generation sequencing. However, this provides little information as to the distribution of the miRNAs in the developing kidney, which is crucial in deciphering their role, especially as there are multiple kidney cell types, each with its own specific transcriptome. Thus, we present a protocol for obtaining spatial information for miRNA expression during kidney development by in situ hybridization (ISH) of anti-miRNA, digoxigenin-labelled (DIG), Locked Nucleic Acid (LNA®) probes on (i) native human embryonic tissue and (ii) human pluripotent stem cell (hPSC)-derived 3D kidney organoids that model kidney development. We found that the method reveals the precise localization of miRNA in specific anatomical structures and/or cell types and confirms their absence from others, thus informing as to their specific role during development.

8.
J Pediatr Urol ; 17(5): 610-620, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34312114

RESUMO

Human urinary tract malformations can cause dysfunctional voiding, urosepsis and kidney failure. Other affected individuals, with severe phenotypes on fetal ultrasound screening, undergo elective termination. Currently, there exist no specific treatments that target the primary biological disease mechanisms that generate these urinary tract malformations. Historically, the pathogenesis of human urinary tract malformations has been obscure. It is now established that some such individuals have defined monogenic causes for their disease. In health, the implicated genes are expressed in either differentiating urinary tract smooth muscle cells, urothelial cells or peripheral nerve cells supplying the bladder. The phenotypes arising from mutations of these genes include megabladder, congenital functional bladder outflow obstruction, and vesicoureteric reflux. We contend that these genetic and molecular insights can now inform the design of novel therapies involving viral vector-mediated gene transfer. Indeed, this technology is being used to treat individuals with early onset monogenic disease outside the urinary tract, such as spinal muscular atrophy. Moreover, it has been contended that human fetal gene therapy, which may be necessary to ameliorate developmental defects, could become a reality in the coming decades. We suggest that viral vector-mediated gene therapies should first be tested in existing mouse models with similar monogenic and anatomical aberrations as found in people with urinary tract malformations. Indeed, gene transfer protocols have been successfully pioneered in newborn and fetal mice to treat non-urinary tract diseases. If similar strategies were successful in animals with urinary tract malformations, this would pave the way for personalized and potentially curative treatments for people with urinary tract malformations.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Animais , Terapia Genética , Camundongos , Sistema Urinário/diagnóstico por imagem
9.
Sci Rep ; 11(1): 15529, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330963

RESUMO

Diabetes mellitus (DM) is the leading cause of chronic kidney disease and diabetic nephropathy is widely studied. In contrast, the pathobiology of diabetic urinary bladder disease is less understood despite dysfunctional voiding being common in DM. We hypothesised that diabetic cystopathy has a characteristic molecular signature. We therefore studied bladders of hyperglycaemic and polyuric rats with streptozotocin (STZ)-induced DM. Sixteen weeks after induction of DM, as assessed by RNA arrays, wide-ranging changes of gene expression occurred in DM bladders over and above those induced in bladders of non-hyperglycaemic rats with sucrose-induced polyuria. The altered transcripts included those coding for extracellular matrix regulators and neural molecules. Changes in key genes deregulated in DM rat bladders were also detected in db/db mouse bladders. In DM rat bladders there was reduced birefringent collagen between detrusor muscle bundles, and atomic force microscopy showed a significant reduction in tissue stiffness; neither change was found in bladders of sucrose-treated rats. Thus, altered extracellular matrix with reduced tissue rigidity may contribute to voiding dysfunction in people with long-term DM. These results serve as an informative stepping stone towards understanding the complex pathobiology of diabetic cystopathy.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Bexiga Urinária/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Masculino , Microscopia de Força Atômica , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Wistar , Transcriptoma/genética , Transcriptoma/fisiologia
10.
Stem Cell Reports ; 16(1): 134-148, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33306987

RESUMO

MicroRNAs (miRNAs) are gene expression regulators and they have been implicated in acquired kidney diseases and in renal development, mostly through animal studies. We hypothesized that the miR-199a/214 cluster regulates human kidney development. We detected its expression in human embryonic kidneys by in situ hybridization. To mechanistically study the cluster, we used 2D and 3D human embryonic stem cell (hESC) models of kidney development. After confirming expression in each model, we inhibited the miRNAs using lentivirally transduced miRNA sponges. This reduced the WT1+ metanephric mesenchyme domain in 2D cultures. Sponges did not prevent the formation of 3D kidney-like organoids. These organoids, however, contained dysmorphic glomeruli, downregulated WT1, aberrant proximal tubules, and increased interstitial capillaries. Thus, the miR-199a/214 cluster fine-tunes differentiation of both metanephric mesenchymal-derived nephrons and kidney endothelia. While clinical implications require further study, it is noted that patients with heterozygous deletions encompassing this miRNA locus can have malformed kidneys.


Assuntos
Diferenciação Celular , MicroRNAs/metabolismo , Antagomirs/metabolismo , Capilares/patologia , Técnicas de Cultura de Células , Regulação para Baixo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Túbulos Renais Proximais/irrigação sanguínea , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Modelos Biológicos , Neovascularização Fisiológica , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo
11.
Front Cell Dev Biol ; 8: 567, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850778

RESUMO

Previous studies in developing Xenopus and zebrafish reported that the phosphate transporter slc20a1a is expressed in pronephric kidneys. The recent identification of SLC20A1 as a monoallelic candidate gene for cloacal exstrophy further suggests its involvement in the urinary tract and urorectal development. However, little is known of the functional role of SLC20A1 in urinary tract development. Here, we investigated this using morpholino oligonucleotide knockdown of the zebrafish ortholog slc20a1a. This caused kidney cysts and malformations of the cloaca. Moreover, in morphants we demonstrated dysfunctional voiding and hindgut opening defects mimicking imperforate anus in human cloacal exstrophy. Furthermore, we performed immunohistochemistry of an unaffected 6-week-old human embryo and detected SLC20A1 in the urinary tract and the abdominal midline, structures implicated in the pathogenesis of cloacal exstrophy. Additionally, we resequenced SLC20A1 in 690 individuals with bladder exstrophy-epispadias complex (BEEC) including 84 individuals with cloacal exstrophy. We identified two additional monoallelic de novo variants. One was identified in a case-parent trio with classic bladder exstrophy, and one additional novel de novo variant was detected in an affected mother who transmitted this variant to her affected son. To study the potential cellular impact of SLC20A1 variants, we expressed them in HEK293 cells. Here, phosphate transport was not compromised, suggesting that it is not a disease mechanism. However, there was a tendency for lower levels of cleaved caspase-3, perhaps implicating apoptosis pathways in the disease. Our results suggest SLC20A1 is involved in urinary tract and urorectal development and implicate SLC20A1 as a disease-gene for BEEC.

12.
J Clin Invest ; 129(12): 5374-5380, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31513549

RESUMO

Myocardin (MYOCD) is the founding member of a class of transcriptional coactivators that bind the serum-response factor to activate gene expression programs critical in smooth muscle (SM) and cardiac muscle development. Insights into the molecular functions of MYOCD have been obtained from cell culture studies, and to date, knowledge about in vivo roles of MYOCD comes exclusively from experimental animals. Here, we defined an often lethal congenital human disease associated with inheritance of pathogenic MYOCD variants. This disease manifested as a massively dilated urinary bladder, or megabladder, with disrupted SM in its wall. We provided evidence that monoallelic loss-of-function variants in MYOCD caused congenital megabladder in males only, whereas biallelic variants were associated with disease in both sexes, with a phenotype additionally involving the cardiovascular system. These results were supported by cosegregation of MYOCD variants with the phenotype in 4 unrelated families by in vitro transactivation studies in which pathogenic variants resulted in abrogated SM gene expression and by the finding of megabladder in 2 distinct mouse models with reduced Myocd activity. In conclusion, we have demonstrated that variants in MYOCD result in human disease, and the collective findings highlight a vital role for MYOCD in mammalian organogenesis.


Assuntos
Mutação , Proteínas Nucleares/genética , Transativadores/genética , Bexiga Urinária/anormalidades , Adulto , Animais , Feminino , Variação Genética , Humanos , Masculino , Camundongos , Músculo Liso/metabolismo , Proteínas Nucleares/fisiologia , Transativadores/fisiologia
13.
J Pathol ; 249(4): 472-484, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31400222

RESUMO

Transforming growth factor-ß (TGFß) has been reported to be dysregulated in malformed ureters. There exists, however, little information on whether altered TGFß levels actually perturb ureter development. We therefore hypothesised that TGFß has functional effects on ureter morphogenesis. Tgfb1, Tgfb2 and Tgfb3 transcripts coding for TGFß ligands, as well as Tgfbr1 and Tgfbr2 coding for TGFß receptors, were detected by quantitative polymerase chain reaction in embryonic mouse ureters collected over a wide range of stages. As assessed by in situ hybridisation and immunohistochemistry, the two receptors were detected in embryonic urothelia. Next, TGFß1 was added to serum-free cultures of embryonic day 15 mouse ureters. These organs contain immature smooth muscle and urothelial layers and their in vivo potential to grow and acquire peristaltic function can be replicated in serum-free organ culture. Such organs therefore constitute a suitable developmental stage with which to define roles of factors that affect ureter growth and functional differentiation. Exogenous TGFß1 inhibited growth of the ureter tube and generated cocoon-like dysmorphogenesis. RNA sequencing suggested that altered levels of transcripts encoding certain fibroblast growth factors (FGFs) followed exposure to TGFß. In serum-free organ culture exogenous FGF10 but not FGF18 abrogated certain dysmorphic effects mediated by exogenous TGFß1. To assess whether an endogenous TGFß axis functions in developing ureters, embryonic day 15 explants were exposed to TGFß receptor chemical blockade; growth of the ureter was enhanced, and aberrant bud-like structures arose from the urothelial tube. The muscle layer was attenuated around these buds, and peristalsis was compromised. To determine whether TGFß effects were limited to one stage, explants of mouse embryonic day 13 ureters, more primitive organs, were exposed to exogenous TGFß1, again generating cocoon-like structures, and to TGFß receptor blockade, again generating ectopic buds. As for the mouse studies, immunostaining of normal embryonic human ureters detected TGFßRI and TGFßRII in urothelia. Collectively, these observations reveal unsuspected regulatory roles for endogenous TGFß in embryonic ureters, fine-tuning morphogenesis and functional differentiation. Our results also support the hypothesis that the TGFß up-regulation reported in ureter malformations impacts on pathobiology. Further experiments are needed to unravel the intracellular signalling mechanisms involved in these dysmorphic responses. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Morfogênese , Fator de Crescimento Transformador beta/metabolismo , Ureter/anormalidades , Ureter/metabolismo , Anormalidades Urogenitais/metabolismo , Urotélio/anormalidades , Urotélio/metabolismo , Animais , Diferenciação Celular , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Humanos , Camundongos , Técnicas de Cultura de Órgãos , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/farmacologia , Ureter/efeitos dos fármacos , Anormalidades Urogenitais/genética , Urotélio/efeitos dos fármacos
14.
Am J Hum Genet ; 104(5): 994-1006, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31051115

RESUMO

Congenital lower urinary-tract obstruction (LUTO) is caused by anatomical blockage of the bladder outflow tract or by functional impairment of urinary voiding. About three out of 10,000 pregnancies are affected. Although several monogenic causes of functional obstruction have been defined, it is unknown whether congenital LUTO caused by anatomical blockage has a monogenic cause. Exome sequencing in a family with four affected individuals with anatomical blockage of the urethra identified a rare nonsense variant (c.2557C>T [p.Arg853∗]) in BNC2, encoding basonuclin 2, tracking with LUTO over three generations. Re-sequencing BNC2 in 697 individuals with LUTO revealed three further independent missense variants in three unrelated families. In human and mouse embryogenesis, basonuclin 2 was detected in lower urinary-tract rudiments. In zebrafish embryos, bnc2 was expressed in the pronephric duct and cloaca, analogs of the mammalian lower urinary tract. Experimental knockdown of Bnc2 in zebrafish caused pronephric-outlet obstruction and cloacal dilatation, phenocopying human congenital LUTO. Collectively, these results support the conclusion that variants in BNC2 are strongly implicated in LUTO etiology as a result of anatomical blockage.


Assuntos
Aberrações Cromossômicas , Proteínas de Ligação a DNA/genética , Doenças Fetais/genética , Mutação , Obstrução do Colo da Bexiga Urinária/congênito , Obstrução do Colo da Bexiga Urinária/genética , Adulto , Animais , Criança , Feminino , Doenças Fetais/patologia , Genes Dominantes , Idade Gestacional , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem , Gravidez , Obstrução do Colo da Bexiga Urinária/patologia , Peixe-Zebra
15.
Front Pediatr ; 7: 136, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31032239

RESUMO

The urinary tract comprises the renal pelvis, the ureter, the urinary bladder, and the urethra. The tract acts as a functional unit, first propelling urine from the kidney to the bladder, then storing it at low pressure inside the bladder which intermittently and completely voids urine through the urethra. Congenital diseases of these structures can lead to a range of diseases sometimes associated with fetal losses or kidney failure in childhood and later in life. In some of these disorders, parts of the urinary tract are severely malformed. In other cases, the organs appear grossly intact yet they have functional deficits that compromise health. Human studies are beginning to indicate monogenic causes for some of these diseases. Here, the implicated genes can encode smooth muscle, neural or urothelial molecules, or transcription factors that regulate their expression. Furthermore, certain animal models are informative about how such molecules control the development and functional differentiation of the urinary tract. In future, novel therapies, including those based on gene transfer and stem cell technologies, may be used to treat these diseases to complement conventional pharmacological and surgical clinical therapies.

16.
Kidney Int ; 95(5): 1138-1152, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30885509

RESUMO

Mutations in leucine-rich-repeats and immunoglobulin-like-domains 2 (LRIG2) or in heparanase 2 (HPSE2) cause urofacial syndrome, a devastating autosomal recessive disease of functional bladder outlet obstruction. It has been speculated that urofacial syndrome has a neural basis, but it is unknown whether defects in urinary bladder innervation are present. We hypothesized that urofacial syndrome features a peripheral neuropathy of the bladder. Mice with homozygous targeted Lrig2 mutations had urinary defects resembling those found in urofacial syndrome. There was no anatomical blockage of the outflow tract, consistent with a functional bladder outlet obstruction. Transcriptome analysis revealed differential expression of 12 known transcripts in addition to Lrig2, including 8 with established roles in neurobiology. Mice with homozygous mutations in either Lrig2 or Hpse2 had increased nerve density within the body of the urinary bladder and decreased nerve density around the urinary outflow tract. In a sample of 155 children with chronic kidney disease and urinary symptoms, we discovered novel homozygous missense LRIG2 variants that were predicted to be pathogenic in 2 individuals with non-syndromic bladder outlet obstruction. These observations provide evidence that a peripheral neuropathy is central to the pathobiology of functional bladder outlet obstruction in urofacial syndrome, and emphasize the importance of LRIG2 and heparanase 2 for nerve patterning in the urinary tract.


Assuntos
Glucuronidase/genética , Glicoproteínas de Membrana/genética , Doenças do Sistema Nervoso Periférico/genética , Obstrução do Colo da Bexiga Urinária/genética , Bexiga Urinária/inervação , Doenças Urológicas/genética , Animais , Criança , Análise Mutacional de DNA , Fácies , Feminino , Perfilação da Expressão Gênica , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Doenças do Sistema Nervoso Periférico/patologia , Bexiga Urinária/patologia , Obstrução do Colo da Bexiga Urinária/patologia , Doenças Urológicas/patologia
17.
Methods Mol Biol ; 1926: 31-38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30742260

RESUMO

The ability to explant and then maintain embryonic tissues in organ culture makes it feasible to study the growth and differentiation of whole organs, or parts or combinations of them, in three dimensions. Moreover, the possible effects of biochemical manipulations or mutations can be explored by visualizing a growing organ. The mammalian renal tract comprises the kidney, ureter, and urinary bladder, and the focus of this chapter is organ culture of the embryonic mouse ureter in serum-free defined medium. Over the culture period, rudiments grow in length, smooth muscle differentiates, and the ureters then undergo peristalsis in a proximal to distal direction.


Assuntos
Rim/embriologia , Técnicas de Cultura de Órgãos/métodos , Ureter/embriologia , Bexiga Urinária/embriologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Mutação/genética , Peristaltismo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA