Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Total Environ ; 865: 161278, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36592904

RESUMO

The rupture of the Córrego do Feijão dam in Brumadinho (January 25, 2019) caused serious damage to the Paraopeba River and compromised the quality of its waters for human consumption. However, the possible effects of the dam collapse on the river microbiome and its antibiotic resistance profiles are unknown. The present study aims to analyse the possible shifts in microbial diversity and enhancement of antibiotic resistance in the Paraopeba River. To this end, two sampling campaigns (February and May 2019) were performed to obtain water across the entire Paraopeba River (eight sampling locations: Moeda, Brumadinho, Igarapé, Juatuba, Varginha, Angueretá, Retiro Baixo and Três Marias; ~464 km). This sampling scheme enabled determining the effects of the disaster on the river microbiome. Total DNA and microbial isolation were performed with these water samples. The 16S rRNA-based microbiome analyses (n = 24; 2.05 million 16S rRNA reads) showed changes in microbial diversity immediately after the disaster with the presence of metal-indicating bacteria (Acinetobacter, Bacillus, Novosphingobium, and Sediminibacterium). Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) identification of bacterial isolates (n = 170) also disclosed possible indicators of faecal contamination across the Paraopeba (Cloacibacterium, Bacteroides, Feaecalibacterium, Bifidobacterium, Citrobacter, Enterobacter, Enterococcus and Escherichia). Antibiotic resistance increased significantly to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanate, ceftriaxone, and cefalotin among isolates obtained in May after the disaster. The effects of toxic mud on microbiomes were felt at all points sampled up to Anguereta. The ore mud may have exacerbated the growth of different antibiotic-resistant, metal-resistant, and faecal-indicating bacteria in the Paraopeba River.


Assuntos
Microbiota , Colapso Estrutural , Poluentes Químicos da Água , Humanos , Rios/microbiologia , RNA Ribossômico 16S/genética , Brasil , Bactérias/genética , Poluentes Químicos da Água/análise , Resistência Microbiana a Medicamentos , Água/análise , Ampicilina/análise , Monitoramento Ambiental
2.
Arch Microbiol ; 203(1): 399-404, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32844278

RESUMO

Description of a Gram-negative, motile, circular-shaped bacterial strain, designated A511T obtained from the skin of the pufferfish Sphoeroides spengleri (Family Tetraodontidae), collected in Arraial do Cabo, Brazil. Optimum growth occurs at 20-28 °C in the presence of 3% NaCl. The genome sequence of the novel isolate consisted of 4.36 Mb, 3,976 coding genes and G + C content of 42.5%. Genomic taxonomy analyses based on average amino acid (AAI), genome-to-genome-distance (GGDH) and phylogenetic reconstruction placed A511T (= CBAS 712T = CAIM 1939T) into a new species of the genus Vibrio (Vibrio tetraodonis sp. nov.). The genome of the novel species contains eight genes clusters (~ 183.9 Kbp in total) coding for different types of bioactive compounds that hint to several possible ecological roles in the pufferfish host.


Assuntos
Genoma Bacteriano/genética , Filogenia , Vibrio/classificação , Vibrio/genética , Composição de Bases , Brasil , RNA Ribossômico 16S/genética , Cloreto de Sódio/metabolismo , Especificidade da Espécie , Vibrio/crescimento & desenvolvimento , Vibrio/metabolismo
3.
Sci Total Environ ; 705: 135914, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31838417

RESUMO

On 25 January 2019, Córrego do Feijão's tailing dam at Brumadinho city (Minas Gerais, Brazil) breached, leaving over 250 people dead. At least 12 million cubic meters of ore tailing were spread into Paraopeba River and the surrounding area. To evaluate the short-term impacts of the Brumadinho dam rupture on the environment, we performed biogeochemical, microbiological and ecotoxicological analyses across 464 km of the Paraopeba River in the week following the disaster (1 February 2019) and four months latter (27-29 May 2019). Immediately after the disaster, the water turbidity was 3000 NTU, 30 times greater than the standard recommended by the Brazilian Resolution for Water Quality (CONAMA 357). Up to a 60-fold increase in iron tolerant microbial colony forming unities was observed up to 115 km downstream of the dam failure in May 2019 (compared with February 2019), suggesting changes in microbial metabolic profiles. In the second sampling (May 2019), the ecotoxicological analyses indicate higher zebrafish embryo mortality (up to ~85% embryo mortality) rates in Retiro Baixo (304 km from dam failure location). However, increased zebrafish mortality in Retiro Baixo and Três Marias reservoirs may not be related exclusively to the dam failure. The causal nexus of mortality may be associated with other factors (e.g. local sewage pollution). Our study suggests that independent monitoring programs are needed to quantify the extent of potential impacts caused by the anthropogenic use of the river and to promote the recovery of the impacted area.

4.
Sci. Total Environ. ; 705: 135914, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17426

RESUMO

On 25 January 2019, Córrego do Feijão's tailing dam at Brumadinho city (Minas Gerais, Brazil) breached, leaving over 250 people dead. At least 12 million cubic meters of ore tailing were spread into Paraopeba River and the surrounding area. To evaluate the short-term impacts of the Brumadinho dam rupture on the environment, we performed biogeochemical, microbiological and ecotoxicological analyses across 464 km of the Paraopeba River in the week following the disaster (1 February 2019) and four months latter (27–29 May 2019). Immediately after the disaster, the water turbidity was 3000 NTU, 30 times greater than the standard recommended by the Brazilian Resolution for Water Quality (CONAMA 357). Up to a 60-fold increase in iron tolerant microbial colony forming unities was observed up to 115 km downstream of the dam failure in May 2019 (compared with February 2019), suggesting changes in microbial metabolic profiles. In the second sampling (May 2019), the ecotoxicological analyses indicate higher zebrafish embryo mortality (up to ~85% embryo mortality) rates in Retiro Baixo (304 km from dam failure location). However, increased zebrafish mortality in Retiro Baixo and Três Marias reservoirs may not be related exclusively to the dam failure. The causal nexus of mortality may be associated with other factors (e.g. local sewage pollution). Our study suggests that independent monitoring programs are needed to quantify the extent of potential impacts caused by the anthropogenic use of the river and to promote the recovery of the impacted area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA