Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Microb Pathog ; 191: 106672, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705219

RESUMO

Phytopathogenic fungi significantly threaten global food security, causing substantial yield and quality losses. Sustainable solutions are urgently needed to combat these agricultural pathogens. This study explored the potential of silver (Ag), copper (Cu), and combined Ag/Cu nanoparticles capped with aminolevulinic acid (ALA) as antifungal agents. The nanoparticles (ALAAg, ALACu, and ALAAgCu) were synthesized via photoreduction and characterized using various techniques (UV-Vis, TEM, XRD, Zeta potential). Their antifungal activity against four key plant pathogens (Alternaria grandis, Colletotrichum truncatum, Corynespora cassiicola, and Fusarium oxysporum) was evaluated using poisoned food techniques. Notably, ALAAgCuNPs demonstrated superior antifungal activity compared to a conventional fungicide against two fungal strains. Even at lower concentrations, ALAAgCuNPs exhibited fungistatic effects comparable to those of the control. These promising results suggest the potential of ALAAgCu NPs as a broad-spectrum, potentially eco-friendly alternative for fungal control in plants and seeds. This approach is crucial for ensuring crop health, harvest quality, and food safety.


Assuntos
Ácido Aminolevulínico , Antifúngicos , Cobre , Fungos , Nanopartículas Metálicas , Doenças das Plantas , Prata , Cobre/farmacologia , Cobre/química , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Ácido Aminolevulínico/farmacologia , Testes de Sensibilidade Microbiana , Fusarium/efeitos dos fármacos
2.
J Drug Deliv Sci Tech, v. 101, 106165, nov. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5472

RESUMO

Multidrug-resistant bacteria (MDR) and bacterial virulence pose significant challenges to global health. Nanotechnology offers exciting possibilities for developing innovative strategies to combat these issues. This study investigates the synergistic effects of silver nanoparticles (AgNPs) and gamma-aminobutyric acid (GABA) to address antibiotic resistance and bacterial virulence. We report the synthesis and characterization of GABA-coated AgNPs (GABAAgNPs) using UV–VIS and infrared spectroscopies, zeta potential, X-ray diffraction, and transmission electron microscopy. The interaction between GABAAgNPs and model membranes (large unilamellar vesicles, LUVs) was assessed, revealing the formation of liposomal-bound GABAAgNPs (LPGABAAgNPs). Antimicrobial activity against E. coli ATCC 25922 demonstrated that LPGABAAgNPs exhibit enhanced antibacterial efficacy compared to free GABAAgNPs. These findings suggest that liposomal delivery of GABAAgNPs is a promising approach for optimizing their antibacterial properties. Moreover, incorporating GABA into the nanoparticle system offers the potential to modulate bacterial virulence, providing a multifaceted strategy to combat infection.

3.
Chem Biodivers ; 20(1): e202200787, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36420909

RESUMO

L-Cysteine (Cys) is a non-essential sulfur-containing amino acid, crucial for protein synthesis, detoxification, and several metabolic functions. Cys is widely used in the agricultural, food, cosmetic, and pharmaceutical industries. So, a suitable sensitive and selective sensing approach is of great interest, and a low-cost sensor would be necessary. This article presents silver nanoparticles (EuAgNPs) synthesized by a green synthesis method using Eugenia uniflora L. extracts and photoreduction. The nanoparticles were characterized by UV/VIS, transmission electron microscopy, high-performance liquid chromatography (HPLC), FTIR, and Zeta potential. With the addition of Cys in the EuAgNPs solution, the terminal thiol part of L-cysteine binds on the surface of nanoparticles through Ag-S bond. The EuAgNPs and CysAgNPs coexist until flavonoids bound the amino group of Cys, enhancing the red color of solutions. The EuAgNPs provided selectivity to detect Cys among other amino acids, and its detection limit was found to be 3.8 nM. The sensor has the advantages of low-cost synthesis, fast response, high selectivity, and sensitivity.


Assuntos
Nanopartículas Metálicas , Prata , Prata/química , Cisteína/química , Nanopartículas Metálicas/química
4.
RSC Adv ; 12(46): 30094-30103, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36329930

RESUMO

Aminolevulinic acid (ALA) is considered one of the most critical plants growth regulators and essential precursors for chlorophyll biosynthesis; besides, its photodynamic activity can be used to exterminate larvae and microorganisms in plants and soil. Silver nanoparticles (AgNPs) have unique physicochemical properties and potent antimicrobial, antiviral, and antifungal activities, and in agriculture, their application as nanopesticides has been proposed. In this study, silver and silver-iron nanoparticles capped/stabilized with aminolevulinic acid (ALAAgNPs and ALAAgFeNPs) were synthesized by the photoreduction method and characterized by UV-vis spectroscopy, transmission electron microscopy, and zeta potential analysis. The kinetics of 1O2 generation from ALAAgFeNPs were obtained. The ALANP toxicity was evaluated on stalks of E. densa by observing cell morphology changes and measuring chlorophyll content compared with water-treated plants. Antimicrobial activity was tested against E. coli, P. aeruginosa, and Candida albicans. The results suggested that ALANPs (prepared with [AgNO3] ≤ 0.2 mM and [ALA] ≤ 0.4 mM) could be suitable for applications in the agricultural sector. The presence of ∼0.3 mmol of iron in ALAAgNPs synthesis increased cell uptake and chlorophyll synthesis.

5.
RSC Adv, v. 12, p. 30094–30103, out. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4662

RESUMO

Aminolevulinic acid (ALA) is considered one of the most critical plants growth regulators and essential precursors for chlorophyll biosynthesis; besides, its photodynamic activity can be used to exterminate larvae and microorganisms in plants and soil. Silver nanoparticles (AgNPs) have unique physicochemical properties and potent antimicrobial, antiviral, and antifungal activities, and in agriculture, their application as nanopesticides has been proposed. In this study, silver and silver–iron nanoparticles capped/stabilized with aminolevulinic acid (ALAAgNPs and ALAAgFeNPs) were synthesized by the photoreduction method and characterized by UV-vis spectroscopy, transmission electron microscopy, and zeta potential analysis. The kinetics of 1O2 generation from ALAAgFeNPs were obtained. The ALANP toxicity was evaluated on stalks of E. densa by observing cell morphology changes and measuring chlorophyll content compared with water-treated plants. Antimicrobial activity was tested against E. coli, P. aeruginosa, and Candida albicans. The results suggested that ALANPs (prepared with [AgNO3] ≤ 0.2 mM and [ALA] ≤ 0.4 mM) could be suitable for applications in the agricultural sector. The presence of ∼0.3 mmol of iron in ALAAgNPs synthesis increased cell uptake and chlorophyll synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA