Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Crit Care ; 26(1): 206, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799268

RESUMO

BACKGROUND: The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear. OBJECTIVES: We aim to investigate the role of the Gasdermin-D (GSDMD) pathway on NETs release and the development of organ damage during COVID-19. METHODS: We performed a single-cell transcriptome analysis in public data of bronchoalveolar lavage. Then, we enrolled 63 hospitalized patients with moderate and severe COVID-19. We analyze in blood and lung tissue samples the expression of GSDMD, presence of NETs, and signaling pathways upstreaming. Furthermore, we analyzed the treatment with disulfiram in a mouse model of SARS-CoV-2 infection. RESULTS: We found that the SARS-CoV-2 virus directly activates the pore-forming protein GSDMD that triggers NET production and organ damage in COVID-19. Single-cell transcriptome analysis revealed that the expression of GSDMD and inflammasome-related genes were increased in COVID-19 patients. High expression of active GSDMD associated with NETs structures was found in the lung tissue of COVID-19 patients. Furthermore, we showed that activation of GSDMD in neutrophils requires active caspase1/4 and live SARS-CoV-2, which infects neutrophils. In a mouse model of SARS-CoV-2 infection, the treatment with disulfiram inhibited NETs release and reduced organ damage. CONCLUSION: These results demonstrated that GSDMD-dependent NETosis plays a critical role in COVID-19 immunopathology and suggests GSDMD as a novel potential target for improving the COVID-19 therapeutic strategy.


Assuntos
Tratamento Farmacológico da COVID-19 , Armadilhas Extracelulares , Animais , Dissulfiram/metabolismo , Armadilhas Extracelulares/metabolismo , Camundongos , Neutrófilos/metabolismo , SARS-CoV-2
2.
J Exp Med ; 217(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32926098

RESUMO

Severe COVID-19 patients develop acute respiratory distress syndrome that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that neutrophil extracellular traps (NETs) have been described as important mediators of tissue damage in inflammatory diseases, we investigated whether NETs would be involved in COVID-19 pathophysiology. A cohort of 32 hospitalized patients with a confirmed diagnosis of COVID-19 and healthy controls were enrolled. The concentration of NETs was augmented in plasma, tracheal aspirate, and lung autopsies tissues from COVID-19 patients, and their neutrophils released higher levels of NETs. Notably, we found that viable SARS-CoV-2 can directly induce the release of NETs by healthy neutrophils. Mechanistically, NETs triggered by SARS-CoV-2 depend on angiotensin-converting enzyme 2, serine protease, virus replication, and PAD-4. Finally, NETs released by SARS-CoV-2-activated neutrophils promote lung epithelial cell death in vitro. These results unravel a possible detrimental role of NETs in the pathophysiology of COVID-19. Therefore, the inhibition of NETs represents a potential therapeutic target for COVID-19.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Armadilhas Extracelulares/fisiologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Células A549 , Adulto , Enzima de Conversão de Angiotensina 2 , COVID-19 , Morte Celular , Infecções por Coronavirus/sangue , Infecções por Coronavirus/patologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Células HeLa , Humanos , Masculino , Ativação de Neutrófilo , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/sangue , Pneumonia Viral/patologia , SARS-CoV-2 , Serina Proteases/metabolismo , Sucção , Traqueia/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA