Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
EMBO J ; 42(20): e110844, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37661798

RESUMO

Homologous recombination (HR) is a prominent DNA repair pathway maintaining genome integrity. Mutations in many HR genes lead to cancer predisposition. Paradoxically, the implication of the pivotal HR factor RAD51 on cancer development remains puzzling. Particularly, no RAD51 mouse models are available to address the role of RAD51 in aging and carcinogenesis in vivo. We engineered a mouse model with an inducible dominant-negative form of RAD51 (SMRad51) that suppresses RAD51-mediated HR without stimulating alternative mutagenic repair pathways. We found that in vivo expression of SMRad51 led to replicative stress, systemic inflammation, progenitor exhaustion, premature aging and reduced lifespan, but did not trigger tumorigenesis. Expressing SMRAD51 in a breast cancer predisposition mouse model (PyMT) decreased the number and the size of tumors, revealing an anti-tumor activity of SMRAD51. We propose that these in vivo phenotypes result from chronic endogenous replication stress caused by HR decrease, which preferentially targets progenitors and tumor cells. Our work underlines the importance of RAD51 activity for progenitor cell homeostasis, preventing aging and more generally for the balance between cancer and aging.


Assuntos
Neoplasias , Rad51 Recombinase , Animais , Camundongos , Envelhecimento/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Dano ao DNA , Reparo do DNA , Recombinação Homóloga , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
4.
Cells ; 12(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37190078

RESUMO

Homologous recombination (HR), an evolutionary conserved pathway, plays a paramount role(s) in genome plasticity. The pivotal HR step is the strand invasion/exchange of double-stranded DNA by a homologous single-stranded DNA (ssDNA) covered by RAD51. Thus, RAD51 plays a prime role in HR through this canonical catalytic strand invasion/exchange activity. The mutations in many HR genes cause oncogenesis. Surprisingly, despite its central role in HR, the invalidation of RAD51 is not classified as being cancer prone, constituting the "RAD51 paradox". This suggests that RAD51 exercises other noncanonical roles that are independent of its catalytic strand invasion/exchange function. For example, the binding of RAD51 on ssDNA prevents nonconservative mutagenic DNA repair, which is independent of its strand exchange activity but relies on its ssDNA occupancy. At the arrested replication forks, RAD51 plays several noncanonical roles in the formation, protection, and management of fork reversal, allowing for the resumption of replication. RAD51 also exhibits noncanonical roles in RNA-mediated processes. Finally, RAD51 pathogenic variants have been described in the congenital mirror movement syndrome, revealing an unexpected role in brain development. In this review, we present and discuss the different noncanonical roles of RAD51, whose presence does not automatically result in an HR event, revealing the multiple faces of this prominent actor in genomic plasticity.


Assuntos
Reparo do DNA , Rad51 Recombinase , DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples , Proteínas de Ligação a DNA/metabolismo , Rad51 Recombinase/genética , Humanos , Animais
5.
Cell Death Differ ; 30(5): 1349-1365, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36869180

RESUMO

Cells are inevitably challenged by low-level/endogenous stresses that do not arrest DNA replication. Here, in human primary cells, we discovered and characterized a noncanonical cellular response that is specific to nonblocking replication stress. Although this response generates reactive oxygen species (ROS), it induces a program that prevents the accumulation of premutagenic 8-oxoguanine in an adaptive way. Indeed, replication stress-induced ROS (RIR) activate FOXO1-controlled detoxification genes such as SEPP1, catalase, GPX1, and SOD2. Primary cells tightly control the production of RIR: They are excluded from the nucleus and are produced by the cellular NADPH oxidases DUOX1/DUOX2, whose expression is controlled by NF-κB, which is activated by PARP1 upon replication stress. In parallel, inflammatory cytokine gene expression is induced through the NF-κB-PARP1 axis upon nonblocking replication stress. Increasing replication stress intensity accumulates DNA double-strand breaks and triggers the suppression of RIR by p53 and ATM. These data underline the fine-tuning of the cellular response to stress that protects genome stability maintenance, showing that primary cells adapt their responses to replication stress severity.


Assuntos
NADPH Oxidases , NF-kappa B , Humanos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Citocinas/genética , Instabilidade Genômica
6.
ACS Omega ; 8(1): 1026-1036, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643441

RESUMO

Sepiolite is a natural clay silicate that is widely used, including biomedical applications; notably sepiolite shows promising features for the transfer of biological macromolecules into mammalian cells. However, before its use, such an approach should address the efficiency of binding to biological macromolecules and cell toxicity. Because sepiolite spontaneously forms aggregates, its disaggregation can represent an important challenge for improving the suspension performance and the assembly with biological species. However, this can also influence the toxicity of sepiolite in mammalian cells. Here, a very pure commercial sepiolite (Pangel S9), which is present as a partially defibrillated clay mineral, is used to study the consequences of additional deagglomeration/dispersion through sonication. We analyzed the impact of extra sonication on the dispersion of sepiolite aggregates. Factors such as sonication time, sonicator power, and temperature are taken into account. With increasing sonication time, a decrease in aggregation is observed, as well as a decrease in the length of the nanofibers monitored by atomic force microscopy. Changes in the temperature and pH of the solution are also observed during the sonication process. Moreover, although the adsorption capacity of bovine serum albumin (BSA) protein on sepiolite is increased with sonication time, the DNA adsorption efficiency remains unaffected. Finally, sonication of sepiolite decreases the hemolytic activity in blood cells and the toxicity in two different human cell lines. These data show that extra sonication of deagglomerated sepiolite can further favor its interaction with some biomacromolecules (e.g., BSA), and, in parallel, decrease sepiolite toxicity in mammalian cells. Therefore, sonication represents an alluring procedure for future biomedical applications of sepiolite, even when using commercial defibrillated particles.

7.
Nucleic Acids Res ; 50(5): 2651-2666, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35137208

RESUMO

Selection of the appropriate DNA double-strand break (DSB) repair pathway is decisive for genetic stability. It is proposed to act according to two steps: 1-canonical nonhomologous end-joining (C-NHEJ) versus resection that generates single-stranded DNA (ssDNA) stretches; 2-on ssDNA, gene conversion (GC) versus nonconservative single-strand annealing (SSA) or alternative end-joining (A-EJ). Here, we addressed the mechanisms by which RAD51 regulates this second step, preventing nonconservative repair in human cells. Silencing RAD51 or BRCA2 stimulated both SSA and A-EJ, but not C-NHEJ, validating the two-step model. Three different RAD51 dominant-negative forms (DN-RAD51s) repressed GC and stimulated SSA/A-EJ. However, a fourth DN-RAD51 repressed SSA/A-EJ, although it efficiently represses GC. In living cells, the three DN-RAD51s that stimulate SSA/A-EJ failed to load efficiently onto damaged chromatin and inhibited the binding of endogenous RAD51, while the fourth DN-RAD51, which inhibits SSA/A-EJ, efficiently loads on damaged chromatin. Therefore, the binding of RAD51 to DNA, rather than its ability to promote GC, is required for SSA/A-EJ inhibition by RAD51. We showed that RAD51 did not limit resection of endonuclease-induced DSBs, but prevented spontaneous and RAD52-induced annealing of complementary ssDNA in vitro. Therefore, RAD51 controls the selection of the DSB repair pathway, protecting genome integrity from nonconservative DSB repair through ssDNA occupancy, independently of the promotion of CG.


Assuntos
Quebras de DNA de Cadeia Dupla , Rad51 Recombinase , Cromatina , Reparo do DNA por Junção de Extremidades , Reparo do DNA , DNA de Cadeia Simples/genética , Humanos , Rad51 Recombinase/metabolismo
8.
Nucleic Acids Res ; 49(20): 11728-11745, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718776

RESUMO

Canonical non-homologous end-joining (cNHEJ) is the prominent mammalian DNA double-strand breaks (DSBs) repair pathway operative throughout the cell cycle. Phosphorylation of Ku70 at ser27-ser33 (pKu70) is induced by DNA DSBs and has been shown to regulate cNHEJ activity, but the underlying mechanism remained unknown. Here, we established that following DNA damage induction, Ku70 moves from nucleoli to the sites of damage, and once linked to DNA, it is phosphorylated. Notably, the novel emanating functions of pKu70 are evidenced through the recruitment of RNA Pol II and concomitant formation of phospho-53BP1 foci. Phosphorylation is also a prerequisite for the dynamic release of Ku70 from the repair complex through neddylation-dependent ubiquitylation. Although the non-phosphorylable ala-Ku70 form does not compromise the formation of the NHEJ core complex per se, cells expressing this form displayed constitutive and stress-inducible chromosomal instability. Consistently, upon targeted induction of DSBs by the I-SceI meganuclease into an intrachromosomal reporter substrate, cells expressing pKu70, rather than ala-Ku70, are protected against the joining of distal DNA ends. Collectively, our results underpin the essential role of pKu70 in the orchestration of DNA repair execution in living cells and substantiated the way it paves the maintenance of genome stability.


Assuntos
Reparo do DNA por Junção de Extremidades , Autoantígeno Ku/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Fosforilação , Ligação Proteica , RNA Polimerase II/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
9.
NAR Cancer ; 3(2): zcab016, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34316706

RESUMO

Genetic instability is a hallmark of cancer cells. Homologous recombination (HR) plays key roles in genome stability and variability due to its roles in DNA double-strand break and interstrand crosslink repair, and in the protection and resumption of arrested replication forks. HR deficiency leads to genetic instability, and, as expected, many HR genes are downregulated in cancer cells. The link between HR deficiency and cancer predisposition is exemplified by familial breast and ovarian cancers and by some subgroups of Fanconi anaemia syndromes. Surprisingly, although RAD51 plays a pivotal role in HR, i.e., homology search and in strand exchange with a homologous DNA partner, almost no inactivating mutations of RAD51 have been associated with cancer predisposition; on the contrary, overexpression of RAD51 is associated with a poor prognosis in different types of tumours. Taken together, these data highlight the fact that RAD51 differs from its HR partners with regard to cancer susceptibility and expose what we call the 'RAD51 paradox'. Here, we catalogue the dysregulations of HR genes in human pathologies, including cancer and Fanconi anaemia or congenital mirror movement syndromes, and we discuss the RAD51 paradox.

10.
Cancers (Basel) ; 13(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923105

RESUMO

Homologous recombination (HR) is a fundamental evolutionarily conserved process that plays prime role(s) in genome stability maintenance through DNA repair and through the protection and resumption of arrested replication forks. Many HR genes are deregulated in cancer cells. Notably, the breast cancer genes BRCA1 and BRCA2, two important HR players, are the most frequently mutated genes in familial breast and ovarian cancer. Transgenic mice constitute powerful tools to unravel the intricate mechanisms controlling tumorigenesis in vivo. However, the genes central to HR are essential in mammals, and their knockout leads to early embryonic lethality in mice. Elaborated strategies have been developed to overcome this difficulty, enabling one to analyze the consequences of HR disruption in vivo. In this review, we first briefly present the molecular mechanisms of HR in mammalian cells to introduce each factor in the HR process. Then, we present the different mouse models of HR invalidation and the consequences of HR inactivation on tumorigenesis. Finally, we discuss the use of mouse models for the development of targeted cancer therapies as well as perspectives on the future potential for understanding the mechanisms of HR inactivation-driven tumorigenesis in vivo.

12.
Cell Death Dis ; 11(10): 923, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33110058

RESUMO

The maintenance of genomic stability during the cell cycle of progenitor cells is essential for the faithful transmission of genetic information. Mutations in genes that ensure genome stability lead to human developmental syndromes. Mutations in Ataxia Telangiectasia and Rad3-related (ATR) or in ATR-interacting protein (ATRIP) lead to Seckel syndrome, which is characterized by developmental malformations and short life expectancy. While the roles of ATR in replicative stress response and chromosomal segregation are well established, it is unknown how ATRIP contributes to maintaining genomic stability in progenitor cells in vivo. Here, we generated the first mouse model to investigate ATRIP function. Conditional inactivation of Atrip in progenitor cells of the CNS and eye led to microcephaly, microphthalmia and postnatal lethality. To understand the mechanisms underlying these malformations, we used lens progenitor cells as a model and found that ATRIP loss promotes replicative stress and TP53-dependent cell death. Trp53 inactivation in Atrip-deficient progenitor cells rescued apoptosis, but increased mitotic DNA damage and mitotic defects. Our findings demonstrate an essential role of ATRIP in preventing DNA damage accumulation during unchallenged replication.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Dano ao DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Células-Tronco/metabolismo , Animais , Proliferação de Células , Humanos , Camundongos
13.
J Med Genet ; 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32482800

RESUMO

BACKGROUND: Primary ovarian insufficiency (POI) affects 1% of women under 40 years and is a public health problem. The genetic causes of POI are highly heterogeneous with isolated or syndromic forms. Recently, variants in genes involved in DNA repair have been shown to cause POI. Notably, syndromic POI with Fanconi anaemia (FA) traits related to biallelic BRCA2 truncated variants has been reported. Here, we report a novel phenotype of isolated POI with a BRCA2 variant in a consanguineous Turkish family. METHODS: Exome sequencing (ES) was performed in the patient. We also performed functional studies, including a homologous recombination (HR) test, cell proliferation, radiation-induced RAD51 foci formation assays and chromosome breakage studies in primary and lymphoblastoid immortalised cells. The expression of BRCA2 in human foetal ovaries was studied. RESULTS: ES identified a homozygous missense c.8524C>T/p.R2842C-BRCA2 variant. BRCA2 defects induce cancer predisposition and FA. Remarkably, neither the patient nor her family exhibited somatic pathologies. The patient's cells showed intermediate levels of chromosomal breaks, cell proliferation and radiation-induced RAD51 foci formation compared with controls and FA cells. R2842C-BRCA2 only partially complemented HR efficiency compared with wild type-BRCA2. BRCA2 is expressed in human foetal ovaries in pachytene stage oocytes, when meiotic HR occurs. CONCLUSION: We describe the functional assessment of a homozygous hypomorphic BRCA2 variant in a patient with POI without cancer or FA trait. Our findings extend the phenotype of BRCA2 biallelic alterations to fully isolated POI. This study has a major impact on the management and genetic counselling of patients with POI.

14.
Genes (Basel) ; 11(4)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283785

RESUMO

Complete and accurate DNA replication is essential to genome stability maintenance during cellular division. However, cells are routinely challenged by endogenous as well as exogenous agents that threaten DNA stability. DNA breaks and the activation of the DNA damage response (DDR) arising from endogenous replication stress have been observed at pre- or early stages of oncogenesis and senescence. Proper detection and signalling of DNA damage are essential for the autonomous cellular response in which the DDR regulates cell cycle progression and controls the repair machinery. In addition to this autonomous cellular response, replicative stress changes the cellular microenvironment, activating the innate immune response that enables the organism to protect itself against the proliferation of damaged cells. Thereby, the recent descriptions of the mechanisms of the pro-inflammatory response activation after replication stress, DNA damage and DDR defects constitute important conceptual novelties. Here, we review the links of replication, DNA damage and DDR defects to innate immunity activation by pro-inflammatory paracrine effects, highlighting the implications for human syndromes and immunotherapies.


Assuntos
Citocinas/metabolismo , Dano ao DNA , Instabilidade Genômica , Imunidade Inata/imunologia , Inflamação/imunologia , Animais , Reparo do DNA , Humanos , Imunidade Inata/genética , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação
15.
Sci Rep ; 10(1): 6920, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332845

RESUMO

To better define the role of FOXO1 and FOXO3 transcriptional factors in breast carcinogenesis, we performed a comparative study of their expression at both the RNA and protein levels in a series of human breast tumors. We used qRT-PCR assay to quantify mRNA expression and Reverse Phase Protein Arrays (RPPA) to quantify protein expression in 218 breast tumors from patients with known clinical/pathological status and outcome. Weak correlations were observed between mRNA and protein expressions for both FOXO1 and FOXO3 genes. High expression of FOXO3 protein, but not FOXO1 protein, was a good prognostic marker, negatively correlated with KI67 and markers of activity of the PI3K/AKT/mTOR oncogenic pathway, and positively correlated with p53, a marker of apoptosis. Moreover, FOXO3 protein expression, but not FOXO1 protein expression, was also negatively correlated with various proteins involved in different DNA repair mechanisms. FOXO3 protein, but not FOXO1 protein, appears to be a tumor suppressor that inhibits breast cancer by altering DNA damage response (DDR), thereby inducing p53-dependent apoptosis. This antitumor effect appears to be suppressed by excessive activity of the PI3K/AKT/mTOR pathway. High FOXO3 protein expression could be a biomarker of deficient DDR in breast tumors.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ciclo Celular/genética , Proliferação de Células/genética , Dano ao DNA/genética , Reparo do DNA/genética , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
16.
Mol Cancer Res ; 17(1): 54-69, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30257991

RESUMO

BRCA1 mutations have been identified that increase the risk of developing hereditary breast and ovarian cancers. Genetic screening is now offered to patients with a family history of cancer, to adapt their treatment and the management of their relatives. However, a large number of BRCA1 variants of uncertain significance (VUS) are detected. To better understand the significance of these variants, a high-throughput structural and functional analysis was performed on a large set of BRCA1 VUS. Information on both cellular localization and homology-directed DNA repair (HR) capacity was obtained for 78 BRCT missense variants in the UMD-BRCA1 database and measurement of the structural stability and phosphopeptide-binding capacities was performed for 42 mutated BRCT domains. This extensive and systematic analysis revealed that most characterized causal variants affect BRCT-domain solubility in bacteria and all impair BRCA1 HR activity in cells. Furthermore, binding to a set of 5 different phosphopeptides was tested: all causal variants showed phosphopeptide-binding defects and no neutral variant showed such defects. A classification is presented on the basis of mutated BRCT domain solubility, phosphopeptide-binding properties, and VUS HR capacity. These data suggest that HR-defective variants, which present, in addition, BRCT domains either insoluble in bacteria or defective for phosphopeptide binding, lead to an increased cancer risk. Furthermore, the data suggest that variants with a WT HR activity and whose BRCT domains bind with a WT affinity to the 5 phosphopeptides are neutral. The case of variants with WT HR activity and defective phosphopeptide binding should be further characterized, as this last functional defect might be sufficient per se to lead to tumorigenesis. IMPLICATIONS: The analysis of the current study on BRCA1 structural and functional defects on cancer risk and classification presented may improve clinical interpretation and therapeutic selection.


Assuntos
Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fosfopeptídeos/genética , Fosfopeptídeos/metabolismo , Animais , Neoplasias da Mama/patologia , Feminino , Predisposição Genética para Doença , Testes Genéticos , Recombinação Homóloga , Humanos , Camundongos , Modelos Moleculares , Mutação de Sentido Incorreto , Fatores de Risco
17.
Mol Cell Oncol ; 5(3): e1154123, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250878

RESUMO

Genome instability is a hallmark of cancer cells. The joining of distant DNA double-strand ends (DSEs) ineluctably leads to genome rearrangements. We found that the cohesion complex maintains genome stability by repressing the joining of distant DSEs specifically in the S phase, i.e., the main phase producing one-ended DSEs.

18.
Oncotarget ; 9(7): 7464-7475, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29484124

RESUMO

In mammals, FOXO transcriptional factors form a family of four members (FOXO1, 3, 4, and 6) involved in the modulation proliferation, apoptosis, and carcinogenesis. The role of the FOXO family in breast cancer remains poorly elucidated. According to the cellular context and the stage of the disease, FOXOs can have opposite effects on carcinogenesis. To study the role of FOXOs in breast carcinogenesis in more detail, we examined their expression in normal tissues, breast cell lines, and a large series of breast tumours of human origin. We found a very low physiological level of FOXO6 expression in normal adult tissues and high levels of expression in foetal brain. FOXO gene expressions fluctuate specifically in breast cancer cells compared to normal cells, suggesting that these genes may have different roles in breast carcinogenesis. For the first time, we have shown that, among the various FOXO genes, only FOXO6 was frequently highly overexpressed in breast cell lines and tumours. We also found that inhibition of the endogenous expression of FOXO6 by a specific siRNA inhibited the growth of the human breast cell lines MDA-MB-468 and HCC-38. FACS and Western blot analysis showed that inhibition of endogenous expression of FOXO6 induced accumulation of cells in G0/G1 phase of the cell cycle, but not apoptosis. These results tend to demonstrate that the overexpression of the human FOXO6 gene that we highlighted in the breast tumors stimulates breast carcinogenesis by activating breast cancer cell proliferation.

19.
Chem Rec ; 18(7-8): 849-857, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29286197

RESUMO

Sepiolite is a nanofibrous natural silicate that can be used as a nanocarrier for DNA transfer thanks to its strong interaction with DNA molecules and its ability to be naturally internalized into mammalian cells through both non-endocytic and endocytic pathways. Sepiolite, due to its ability to bind various biomolecules, could be a good candidate for use as a nanocarrier for the simultaneous vectorization of diverse biological molecules. In this paper, we review our recent work, issued from a starting collaboration with Prof. Ruiz-Hitzky, that includes diverse aspects on the characterization and main features of sepiolite/DNA nanohybrids, and we present an outlook for the further development of sepiolite for DNA transfer.


Assuntos
DNA/química , Técnicas de Transferência de Genes , Silicatos de Magnésio/química , Nanoestruturas/química , Adsorção , Animais , DNA/metabolismo , Humanos , Silicatos de Magnésio/metabolismo , Silicatos de Magnésio/toxicidade , Nanoestruturas/toxicidade , Tamanho da Partícula , Estudo de Prova de Conceito , Proteínas/química
20.
Oncotarget ; 8(57): 97344-97360, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29228615

RESUMO

The anti-tumor potential of oncolytic adenoviruses (CRAds) has been demonstrated in preclinical and clinical studies. While these agents failed to eradicate tumors when used as a monotherapy, they may be more effective if combined with conventional treatments such as radiotherapy or chemotherapy. This study seeks to evaluate the combination of a CRAd bearing a ∆24 deletion in E1A with valproic acid (VPA), a histone deacetylase inhibitor, for the treatment of human colon carcinomas. This combination led to a strong inhibition of cell growth both in vitro and in vivo compared to treatment with CRAd or VPA alone. This effect did not stem from a better CRAd replication and production in the presence of VPA. Inhibition of cell proliferation and cell death were induced by the combined treatment. Moreover, whereas cells treated only with CRAd displayed a polyploidy (> 4N population), this phenotype was increased in cells treated with both CRAd and VPA. In addition, the increase in polyploidy triggered by combined treatment with CRAd and VPA was associated with the enhancement of H2AX phosphorylation (γH2AX), a hallmark of DNA damage, but also with a decrease of several DNA repair proteins. Finally, viral replication (or E1A expression) was shown to play a key role in the observed effects since no enhancement of polyploidy nor increase in γH2AX were found following cell treatment with a replication-deficient Ad and VPA. Taken together, our results suggest that CRAd and VPA could be used in combination for the treatment of colon carcinomas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA