Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847394

RESUMO

Molecules that facilitate targeted protein degradation (TPD) offer great promise as novel therapeutics. The human hepatic lectin asialoglycoprotein receptor (ASGR) is selectively expressed on hepatocytes. We have previously engineered an anti-ASGR1 antibody-mutant RSPO2 (RSPO2RA) fusion protein (called SWEETS) to drive tissue-specific degradation of ZNRF3/RNF43 E3 ubiquitin ligases, which achieved hepatocyte-specific enhanced Wnt signaling, proliferation, and restored liver function in mouse models, and an antibody-RSPO2RA fusion molecule is currently in human clinical trials. In the current study, we identified two new ASGR1- and ASGR1/2-specific antibodies, 8M24 and 8G8. High-resolution crystal structures of ASGR1:8M24 and ASGR2:8G8 complexes revealed that these antibodies bind to distinct epitopes on opposing sides of ASGR, away from the substrate-binding site. Both antibodies enhanced Wnt activity when assembled as SWEETS molecules with RSPO2RA through specific effects sequestering E3 ligases. In addition, 8M24-RSPO2RA and 8G8-RSPO2RA efficiently downregulate ASGR1 through TPD mechanisms. These results demonstrate the possibility of combining different therapeutic effects and degradation mechanisms in a single molecule.


Assuntos
Receptor de Asialoglicoproteína , Proteólise , Ubiquitina-Proteína Ligases , Via de Sinalização Wnt , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Receptor de Asialoglicoproteína/metabolismo , Animais , Camundongos , Cristalografia por Raios X , Hepatócitos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Peptídeos e Proteínas de Sinalização Intercelular
2.
Cell Chem Biol ; 30(8): 976-986.e5, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37413985

RESUMO

WNTs are essential factors for stem cell biology, embryonic development, and for maintaining homeostasis and tissue repair in adults. Difficulties in purifying WNTs and their lack of receptor selectivity have hampered research and regenerative medicine development. While breakthroughs in WNT mimetic development have overcome some of these difficulties, the tools developed so far are incomplete and mimetics alone are often not sufficient. Here, we developed a complete set of WNT mimetic molecules that cover all WNT/ß-catenin-activating Frizzleds (FZDs). We show that FZD1,2,7 stimulate salivary gland expansion in vivo and salivary gland organoid expansion. We further describe the discovery of a novel WNT-modulating platform that combines WNT and RSPO mimetics' effects into one molecule. This set of molecules supports better organoid expansion in various tissues. These WNT-activating platforms can be broadly applied to organoids, pluripotent stem cells, and in vivo research, and serve as bases for future therapeutic development.


Assuntos
Células-Tronco Pluripotentes , beta Catenina , beta Catenina/metabolismo , Via de Sinalização Wnt
3.
Transl Vis Sci Technol ; 11(9): 19, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36149648

RESUMO

Purpose: There remains a high unmet need for therapies with new mechanisms of action to achieve reperfusion of ischemic retina in diabetic retinopathy. We examined whether a novel frizzled class receptor 4 (FZD4) agonist could promote regeneration of functional blood vessels in animal models of retinopathy. Methods: We developed a novel Norrin mimetic (SZN-413-p) targeting FZD4 and low-density lipoprotein receptor-related protein 5 (LRP5) and examined its effect on retinal and brain endothelial cells in vitro. SZN-413-p was subsequently humanized, resulting in the therapeutic candidate SZN-413, and was examined in animal models of retinopathy. In an oxygen-induced retinopathy mouse model, avascular and neovascularization areas were measured. Furthermore, in a vascular endothelial growth factor (VEGF)-induced retinal vascular leakage rabbit model, the impact on vascular leakage by SZN-413 was examined by measuring fluorescein leakage. Results: SZN-413-p induced Wnt/ß-catenin signaling and upregulated blood-brain barrier/blood-retina barrier gene expressions in endothelial cells. In the oxygen-induced retinopathy mouse model, SZN-413-p and SZN-413 significantly reduced the neovascularization area size (P < 0.001) to a level comparable to, or better than the positive control aflibercept. Both agonists also showed a reduction in avascular area size compared to vehicle (P < 0.001) and aflibercept groups (P < 0.05 and P < 0.01 for SZN-413-p and SZN-413, respectively). In the VEGF-induced retinal vascular leakage rabbit model, SZN-413 reduced retinal vascular leakage by ∼80%, compared to the vehicle-treated group (P < 0.01). Conclusions: Reduction of neovascular tufts and avascular areas and of VEGF-driven retinal vascular leakage suggests that SZN-413 can simultaneously address retinal non-perfusion and vascular leakage. Translational Relevance: FZD4 signaling modulation by SZN-413 is a novel mechanism of action that can offer a new therapeutic strategy for diabetic retinopathy.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Retinopatia Diabética/tratamento farmacológico , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fluoresceínas/uso terapêutico , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Neovascularização Patológica , Oxigênio/uso terapêutico , Coelhos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , beta Catenina/metabolismo , beta Catenina/uso terapêutico
4.
Sci Rep ; 10(1): 2193, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042106

RESUMO

Site-specific labeling of proteins is often a prerequisite for biophysical and biochemical characterization. Chemical modification of a unique cysteine residue is among the most facile methods for site-specific labeling of proteins. However, many proteins have multiple reactive cysteines, which must be mutated to other residues to enable labeling of unique positions. This trial-and-error process often results in cysteine-free proteins with reduced activity or stability. Herein we describe a general methodology to rationally engineer cysteine-less proteins. Briefly, natural variation across orthologues is exploited to identify suitable cysteine replacements compatible with protein activity and stability. As a proof-of-concept, we recount the successful engineering of a cysteine-less mutant of the group II chaperonin from methanogenic archaeon Methanococcus maripaludis. A webapp, REP-X (Replacement at Endogenous Positions from eXtant sequences), which enables users to design their own cysteine-less protein variants, will make this rational approach widely available.


Assuntos
Biologia Computacional/métodos , Mutagênese Sítio-Dirigida/métodos , Engenharia de Proteínas/métodos , Cisteína/química , Cisteína/metabolismo , Proteínas Mutantes/genética , Proteínas/química
5.
Nat Struct Mol Biol ; 24(9): 726-733, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28741612

RESUMO

ATP-dependent allosteric regulation of the ring-shaped group II chaperonins remains ill defined, in part because their complex oligomeric topology has limited the success of structural techniques in suggesting allosteric determinants. Further, their high sequence conservation has hindered the prediction of allosteric networks using mathematical covariation approaches. Here, we develop an information theoretic strategy that is robust to residue conservation and apply it to group II chaperonins. We identify a contiguous network of covarying residues that connects all nucleotide-binding pockets within each chaperonin ring. An interfacial residue between the networks of neighboring subunits controls positive cooperativity by communicating nucleotide occupancy within each ring. Strikingly, chaperonin allostery is tunable through single mutations at this position. Naturally occurring variants at this position that double the extent of positive cooperativity are less prevalent in nature. We propose that being less cooperative than attainable allows chaperonins to support robust folding over a wider range of metabolic conditions.


Assuntos
Trifosfato de Adenosina/metabolismo , Biologia Computacional/métodos , Chaperoninas do Grupo II/química , Chaperoninas do Grupo II/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Regulação Alostérica
6.
J Mol Biol ; 427(18): 2919-30, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25936650

RESUMO

Protein folding in the cell requires the assistance of enzymes collectively called chaperones. Among these, the chaperonins are 1-MDa ring-shaped oligomeric complexes that bind unfolded polypeptides and promote their folding within an isolated chamber in an ATP-dependent manner. Group II chaperonins, found in archaea and eukaryotes, contain a built-in lid that opens and closes over the central chamber. In eukaryotes, the chaperonin TRiC/CCT is hetero-oligomeric, consisting of two stacked rings of eight paralogous subunits each. TRiC facilitates folding of approximately 10% of the eukaryotic proteome, including many cytoskeletal components and cell cycle regulators. Folding of many cellular substrates of TRiC cannot be assisted by any other chaperone. A complete structural and mechanistic understanding of this highly conserved and essential chaperonin remains elusive. However, recent work is beginning to shed light on key aspects of chaperonin function and how their unique properties underlie their contribution to maintaining cellular proteostasis.


Assuntos
Chaperonina com TCP-1/química , Citoesqueleto/metabolismo , Chaperoninas do Grupo II/química , Dobramento de Proteína , Trifosfato de Adenosina/metabolismo , Archaea , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Chaperonina com TCP-1/metabolismo , Citoesqueleto/química , Eucariotos , Chaperoninas do Grupo II/metabolismo , Conformação Proteica , Especificidade por Substrato
7.
EMBO J ; 31(3): 731-40, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22193720

RESUMO

Group II chaperonins mediate protein folding in an ATP-dependent manner in eukaryotes and archaea. The binding of ATP and subsequent hydrolysis promotes the closure of the multi-subunit rings where protein folding occurs. The mechanism by which local changes in the nucleotide-binding site are communicated between individual subunits is unknown. The crystal structure of the archaeal chaperonin from Methanococcus maripaludis in several nucleotides bound states reveals the local conformational changes associated with ATP hydrolysis. Residue Lys-161, which is extremely conserved among group II chaperonins, forms interactions with the γ-phosphate of ATP but shows a different orientation in the presence of ADP. The loss of the ATP γ-phosphate interaction with Lys-161 in the ADP state promotes a significant rearrangement of a loop consisting of residues 160-169. We propose that Lys-161 functions as an ATP sensor and that 160-169 constitutes a nucleotide-sensing loop (NSL) that monitors the presence of the γ-phosphate. Functional analysis using NSL mutants shows a significant decrease in ATPase activity, suggesting that the NSL is involved in timing of the protein folding cycle.


Assuntos
Nucleotídeos de Adenina/metabolismo , Chaperoninas do Grupo II/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Chaperoninas do Grupo II/química , Hidrólise , Cinética , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA