Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 65(12): 2157-2171, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35920844

RESUMO

AIMS/HYPOTHESIS: CD40 expressed in Müller cells is a central driver of diabetic retinopathy. CD40 causes phospholipase Cγ1 (PLCγ1)-dependent ATP release in Müller cells followed by purinergic receptor (P2X7)-dependent production of proinflammatory cytokines in myeloid cells. In the diabetic retina, CD40 and P2X7 upregulate a broad range of inflammatory molecules that promote development of diabetic retinopathy. The molecular event downstream of CD40 that activates the PLCγ1-ATP-P2X7-proinflammatory cytokine cascade and promotes development of diabetic retinopathy is unknown. We hypothesise that disruption of the CD40-driven molecular events that trigger this cascade prevents/treats diabetic retinopathy in mice. METHODS: B6 and transgenic mice with Müller cell-restricted expression of wild-type (WT) CD40 or CD40 with mutations in TNF receptor-associated factor (TRAF) binding sites were made diabetic using streptozotocin. Leucostasis was assessed using FITC-conjugated concanavalin A. Histopathology was examined in the retinal vasculature. Expression of inflammatory molecules and phospho-Tyr783 PLCγ1 (p-PLCγ1) were assessed using real-time PCR, immunoblot and/or immunohistochemistry. Release of ATP and cytokines were measured by ATP bioluminescence and ELISA, respectively. RESULTS: Human Müller cells with CD40 ΔT2,3 (lacks TRAF2,3 binding sites) were unable to phosphorylate PLCγ1 and release ATP in response to CD40 ligation, and could not induce TNF-α/IL-1ß secretion in bystander myeloid cells. CD40-TRAF signalling acted via Src to induce PLCγ1 phosphorylation. Diabetic mice in which WT CD40 in Müller cells was replaced by CD40 ΔT2,3 failed to exhibit phosphorylation of PLCγ1 in these cells and upregulate P2X7 and TNF-α in microglia/macrophages. P2x7 (also known as P2rx7), Tnf-α (also known as Tnf), Il-1ß (also known as Il1b), Nos2, Icam-1 (also known as Icam1) and Ccl2 mRNA were not increased in these mice and the mice did not develop retinal leucostasis and capillary degeneration. Diabetic B6 mice treated intravitreally with a cell-permeable peptide that disrupts CD40-TRAF2,3 signalling did not exhibit either upregulation of P2X7 and inflammatory molecules in the retina or leucostasis. CONCLUSIONS/INTERPRETATION: CD40-TRAF2,3 signalling activated the CD40-PLCγ1-ATP-P2X7-proinflammatory cytokine pathway. Src functioned as a link between CD40-TRAF2,3 and PLCγ1. Replacing WT CD40 with CD40 ΔT2,3 impaired activation of PLCγ1 in Müller cells, upregulation of P2X7 in microglia/macrophages, upregulation of a broad range of inflammatory molecules in the diabetic retina and the development of diabetic retinopathy. Administration of a peptide that disrupts CD40-TRAF2,3 signalling reduced retinal expression of inflammatory molecules and reduced leucostasis in diabetic mice, supporting the therapeutic potential of pharmacological inhibition of CD40-TRAF2,3 in diabetic retinopathy.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Camundongos , Humanos , Animais , Células Ependimogliais/metabolismo , Retinopatia Diabética/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator 2 Associado a Receptor de TNF/genética , Antígenos CD40 , Retina/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Peptídeos , Trifosfato de Adenosina/metabolismo , Mutação
2.
Cell Microbiol ; 21(10): e13084, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31290228

RESUMO

Toxoplasma gondii causes retinitis and encephalitis. Avoiding targeting by autophagosomes is key for its survival because T. gondii cannot withstand lysosomal degradation. During invasion of host cells, T. gondii triggers epidermal growth factor receptor (EGFR) signalling enabling the parasite to avoid initial autophagic targeting. However, autophagy is a constitutive process indicating that the parasite may also use a strategy operative beyond invasion to maintain blockade of autophagic targeting. Finding that such a strategy exists would be important because it could lead to inhibition of host cell signalling as a novel approach to kill the parasite in previously infected cells and treat toxoplasmosis. We report that T. gondii induced prolonged EGFR autophosphorylation. This effect was mediated by PKCα/PKCß âž” Src because T. gondii caused prolonged activation of these molecules and their knockdown or incubation with inhibitors of PKCα/PKCß or Src after host cell invasion impaired sustained EGFR autophosphorylation. Addition of EGFR tyrosine kinase inhibitor (TKI) to previously infected cells led to parasite entrapment by LC3 and LAMP-1 and pathogen killing dependent on the autophagy proteins ULK1 and Beclin 1 as well as lysosomal enzymes. Administration of gefitinib (EGFR TKI) to mice with ocular and cerebral toxoplasmosis resulted in disease control that was dependent on Beclin 1. Thus, T. gondii promotes its survival through sustained EGFR signalling driven by PKCα/ß âž” Src, and inhibition of EGFR controls pre-established toxoplasmosis.


Assuntos
Autofagossomos/metabolismo , Autofagossomos/parasitologia , Autofagia , Receptores ErbB/metabolismo , Toxoplasmose Animal/tratamento farmacológico , Toxoplasmose Animal/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/enzimologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína Beclina-1/metabolismo , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Gefitinibe/uso terapêutico , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Fosforilação , Proteína Quinase C beta/antagonistas & inibidores , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo , Proteína Quinase C-alfa/antagonistas & inibidores , Proteína Quinase C-alfa/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas pp60(c-src)/antagonistas & inibidores , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Toxoplasma/efeitos dos fármacos , Toxoplasma/patogenicidade , Toxoplasmose Animal/enzimologia , Toxoplasmose Animal/genética
3.
Infect Immun ; 87(8)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31109947

RESUMO

Little is known about whether pathogen invasion of neural tissue is affected by immune-based mechanisms in endothelial cells. We examined the effects of endothelial cell CD40 on Toxoplasma gondii invasion of the retina and brain, organs seeded hematogenously. T. gondii circulates in the bloodstream within infected leukocytes (including monocytes and dendritic cells) and as extracellular tachyzoites. After T. gondii infection, mice that expressed CD40 restricted to endothelial cells exhibited diminished parasite loads and histopathology in the retina and brain. These mice also had lower parasite loads in the retina and brain after intravenous (i.v.) injection of infected monocytes or dendritic cells. The protective effect of endothelial cell CD40 was not explained by changes in cellular or humoral immunity, reduced transmigration of leukocytes into neural tissue, or reduced invasion by extracellular parasites. Circulating T. gondii-infected leukocytes (dendritic cells used as a model) led to infection of neural endothelial cells. The number of foci of infection in these cells were reduced if endothelial cells expressed CD40. Infected dendritic cells and macrophages expressed membrane-associated inducible Hsp70. Infected leukocytes triggered Hsp70-dependent autophagy in CD40+ endothelial cells and anti-T. gondii activity dependent on ULK1 and beclin 1. Reduced parasite load in the retina and brain not only required CD40 expression in endothelial cells but was also dependent on beclin 1 and the expression of inducible Hsp70 in dendritic cells. These studies suggest that during endothelial cell-leukocyte interaction, CD40 restricts T. gondii invasion of neural tissue through a mechanism that appears mediated by endothelial cell anti-parasitic activity stimulated by Hsp70.


Assuntos
Encéfalo/parasitologia , Antígenos CD40/fisiologia , Células Endoteliais/imunologia , Retina/parasitologia , Toxoplasma/patogenicidade , Animais , Autofagia , Movimento Celular , Proteínas de Choque Térmico HSP70/fisiologia , Leucócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
4.
PLoS Pathog ; 13(10): e1006671, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29036202

RESUMO

Targeting of Toxoplasma gondii by autophagy is an effective mechanism by which host cells kill the protozoan. Thus, the parasite must avoid autophagic targeting to survive. Here we show that the mammalian cytoplasmic molecule Focal Adhesion Kinase (FAK) becomes activated during invasion of host cells. Activated FAK appears to accompany the formation of the moving junction (as assessed by expression the parasite protein RON4). FAK activation was inhibited by approaches that impaired ß1 and ß3 integrin signaling. FAK caused activation of Src that in turn mediated Epidermal Growth Factor Receptor (EGFR) phosphorylation at the unique Y845 residue. Expression of Src-resistant Y845F EGFR mutant markedly inhibited ROP16-independent activation of STAT3 in host cells. Activation of FAK, Y845 EGFR or STAT3 prevented activation of PKR and eIF2α, key stimulators of autophagy. Genetic or pharmacologic inhibition of FAK, Src, EGFR phosphorylation at Y845, or STAT3 caused accumulation of the autophagy protein LC3 and LAMP-1 around the parasite and parasite killing dependent on autophagy proteins (ULK1 and Beclin 1) and lysosomal enzymes. Parasite killing was inhibited by expression of dominant negative PKR. Thus, T. gondii activates a FAK→Src→Y845-EGFR→STAT3 signaling axis within mammalian cells, thereby enabling the parasite to survive by avoiding autophagic targeting through a mechanism likely dependent on preventing activation of PKR and eIF2α.


Assuntos
Autofagia/fisiologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Toxoplasma , Animais , Receptores ErbB/metabolismo , Interações Hospedeiro-Parasita , Humanos , Quinases da Família src/metabolismo
5.
Diabetes ; 66(2): 483-493, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27474370

RESUMO

Müller cells and macrophages/microglia are likely important for the development of diabetic retinopathy; however, the interplay between these cells in this disease is not well understood. An inflammatory process is linked to the onset of experimental diabetic retinopathy. CD40 deficiency impairs this process and prevents diabetic retinopathy. Using mice with CD40 expression restricted to Müller cells, we identified a mechanism by which Müller cells trigger proinflammatory cytokine expression in myeloid cells. During diabetes, mice with CD40 expressed in Müller cells upregulated retinal tumor necrosis factor-α (TNF-α), interleukin 1ß (IL-1ß), intracellular adhesion molecule 1 (ICAM-1), and nitric oxide synthase (NOS2), developed leukostasis and capillary degeneration. However, CD40 did not cause TNF-α or IL-1ß secretion in Müller cells. TNF-α was not detected in Müller cells from diabetic mice with CD40+ Müller cells. Rather, TNF-α was upregulated in macrophages/microglia. CD40 ligation in Müller cells triggered phospholipase C-dependent ATP release that caused P2X7-dependent production of TNF-α and IL-1ß by macrophages. P2X7-/- mice and mice treated with a P2X7 inhibitor were protected from diabetes-induced TNF-α, IL-1ß, ICAM-1, and NOS2 upregulation. Our studies indicate that CD40 in Müller cells is sufficient to upregulate retinal inflammatory markers and appears to promote experimental diabetic retinopathy and that Müller cells orchestrate inflammatory responses in myeloid cells through a CD40-ATP-P2X7 pathway.


Assuntos
Antígenos CD40/imunologia , Citocinas/imunologia , Diabetes Mellitus Experimental/imunologia , Retinopatia Diabética/imunologia , Células Ependimogliais/imunologia , Macrófagos/imunologia , Microglia/imunologia , Receptores Purinérgicos P2X7/imunologia , Animais , Antígenos CD40/genética , Capilares , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/etiologia , Inflamação , Molécula 1 de Adesão Intercelular/imunologia , Interleucina-1beta/imunologia , Leucostasia/imunologia , Masculino , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Óxido Nítrico Sintase Tipo II/imunologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Fator de Necrose Tumoral alfa/imunologia , Fosfolipases Tipo C/imunologia
6.
Invest Ophthalmol Vis Sci ; 57(14): 6278-6286, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27893093

RESUMO

Purpose: Cluster of differentiation 40 (CD40) is required for retinal capillary degeneration in diabetic mice, a process mediated by the retinal endothelial cells (REC) death. However, CD40 activates prosurvival signals in endothelial cells. The purpose of this study was to identify a mechanism by which CD40 triggers programmed cell death (PCD) of RECs and address this paradox. Methods: Human RECs and Müller cells were incubated with CD154 and L-N6-(1-Iminoethyl)lysine (L-Nil, nitric oxide synthase 2 inhibitor), α-lipoic acid (inhibitor of oxidative stress), anti-Fas ligand antibody, or A-438079 (P2X7 adenosine triphosphate [ATP] receptor inhibitor). Programmed cell death was analyzed by fluorescence-activated cell sorting (FACS) or Hoechst/propidium iodide staining. Release of ATP was measured using a luciferase-based assay. Mice were made diabetic with streptozotocin. Expression of P2X7 was assessed by FACS, quantitative PCR, or immunohistochemistry. Results: Ligation of CD40 in primary RECs did not induce PCD. In contrast, in the presence of primary CD40+ Müller cells, CD40 stimulation caused PCD of RECs that was not impaired by L-Nil, α-lipoic acid, or anti-Fas ligand antibody. We found CD40 did not trigger TNF-α or IL-1ß secretion. Primary Müller cells released extracellular ATP in response to CD40 ligation. Inhibition of P2X7 (A-438079) impaired PCD of RECs; CD40 upregulated P2X7 in RECs, making them susceptible to ATP/P2X7-mediated PCD. Diabetic mice upregulated P2X7 in the retina and RECs in a CD40-dependent manner. Conclusions: Cluster of differentiation 40 induces PCD of RECs through a dual mechanism: ATP release by Müller cells and P2X7 upregulation in RECs. These findings are likely of in vivo relevance since CD40 upregulates P2X7 in RECs in diabetic mice and CD40 is known to be required for retinal capillary degeneration.


Assuntos
Apoptose , Ligante de CD40/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica , Receptores Purinérgicos P2X7/genética , Trifosfato de Adenosina/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Diabetes Mellitus Experimental , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Células Endoteliais/patologia , Ensaio de Imunoadsorção Enzimática , Células Ependimogliais/patologia , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores Purinérgicos P2X7/metabolismo , Retina/metabolismo , Retina/patologia , Tetrazóis/farmacologia
7.
Infect Immun ; 84(9): 2616-26, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27354443

RESUMO

CD40 is an important stimulator of autophagy and autophagic killing of Toxoplasma gondii in host cells. In contrast to autophagy induced by nutrient deprivation or pattern recognition receptors, less is known about the effects of cell-mediated immunity on Beclin 1 and ULK1, key regulators of autophagy. Here we studied the molecular mechanisms by which CD40 stimulates autophagy in macrophages. CD40 ligation caused biphasic Jun N-terminal protein kinase (JNK) phosphorylation. The second phase of JNK phosphorylation was dependent on autocrine production of tumor necrosis factor alpha (TNF-α). TNF-α and JNK signaling were required for the CD40-induced increase in autophagy. JNK signaling downstream of CD40 caused Ser-87 phosphorylation of Bcl-2 and dissociation between Bcl-2 and Beclin 1, an event known to stimulate the autophagic function of Beclin 1. However, TNF-α alone was unable to stimulate autophagy. CD40 also stimulated autophagy via a pathway that included calcium/calmodulin-dependent kinase kinase ß (CaMKKß), AMP-activated protein kinase (AMPK), and ULK1. CD40 caused AMPK phosphorylation at its activating site, Thr-172. This effect was mediated by CaMKKß and was not impaired by neutralization of TNF-α. CD40 triggered AMPK-dependent Ser-555 phosphorylation of ULK1. CaMKKß, AMPK, and ULK1 were required for CD40-induced increase in autophagy. CD40-mediated autophagic killing of Toxoplasma gondii is known to require TNF-α. Knockdown of JNK, CaMKKß, AMPK, or ULK1 prevented T. gondii killing in CD40-activated macrophages. The second phase of JNK phosphorylation-Bcl-2 phosphorylation-Bcl-2-Beclin 1 dissociation and AMPK phosphorylation-ULK1 phosphorylation occurred simultaneously at ∼4 h post-CD40 stimulation. Thus, CaMKKß and TNF-α are upstream molecules by which CD40 acts on ULK1 and Beclin 1 to stimulate autophagy and killing of T. gondii.


Assuntos
Anti-Infecciosos/farmacologia , Autofagia/imunologia , Antígenos CD40/imunologia , Macrófagos/imunologia , Transdução de Sinais/imunologia , Toxoplasma/imunologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1/metabolismo , Humanos , Imunidade Celular/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
PLoS One ; 10(12): e0144133, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26710229

RESUMO

CD40, CX3CL1 and TNF-α promote atheroma and neointima formation. CD40 and TNF-α are also central to the development of diabetic retinopathy while CX3CL1 may play a role in the pathogenesis of this retinopathy. The purpose of this study was to examine whether CD40 ligation increases CX3CL1 and TNF-α protein expression in human endothelial cells from the aorta and retina. CD154 (CD40 ligand) upregulated membrane-bound and soluble CX3CL1 in human aortic endothelial cells. CD154 triggered TNF-α production by human aortic endothelial cells. TNF Receptor Associated Factors (TRAF) are key mediators of CD40 signaling. Compared to human aortic endothelial cells that express wt CD40, cells that express CD40 with a mutation that prevents TRAF2,3 recruitment, or CD40 with a mutation that prevents TRAF6 recruitment exhibited a profound inhibition of CD154-driven upregulation of membrane bound and soluble CX3CL1 as well as of TNF-α secretion. While both CD154 and TNF-α upregulated CX3CL1 in human aortic endothelial cells, these stimuli could act independently of each other. In contrast to human aortic endothelial cells, human retinal endothelial cells did not increase membrane bound or soluble CX3CL1 expression or secrete TNF-α in response to CD154 even though CD40 ligation upregulated ICAM-1 and CCL2 in these cells. Moreover, TNF-α did not upregulate CX3CL1 in retinal endothelial cells. In conclusion, CD40 ligation increases CX3CL1 protein levels and induces TNF-α production in endothelial cells. However, endothelial cells are heterogeneous in regards to these responses. Human aortic but not retinal endothelial cells upregulated CX3CL1 and TNF-α in response to CD40 ligation, as well as upregulated CX3CL1 in response to TNF-α. These dissimilarities may contribute to differences in regulation of inflammation in large vessels versus the retina.


Assuntos
Aorta/citologia , Antígenos CD40/metabolismo , Quimiocina CX3CL1/biossíntese , Retina/citologia , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Aorta/metabolismo , Antígenos CD40/genética , Ligante de CD40/metabolismo , Células Cultivadas , Quimiocina CCL2/biossíntese , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/biossíntese , Neointima/patologia , Placa Aterosclerótica/patologia , Retina/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA