Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 589, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238310

RESUMO

Fluctuations may induce the degradation of order by overcoming ordering interactions, consequently leading to an increase of entropy. This is particularly evident in magnetic systems characterized by nontrivial, constrained disorder, where thermal or quantum fluctuations can yield counterintuitive forms of ordering. Using the proven efficiency of quantum annealers as programmable spin system simulators, we present a study based on entropy postulates and experiments on a platform of programmable superconducting qubits to show that a low level of uncertainty can promote ordering in a system impacted by both thermal and quantum fluctuations. A set of experiments is proposed on a lattice of interacting qubits arranged in a triangular geometry with precisely controlled disorder, effective temperature, and quantum fluctuations. Our results demonstrate the creation of ordered ferrimagnetic and layered anisotropic disordered phases, displaying characteristics akin to the elegant order-by-disorder phenomenon. Extensive experimental evidence is provided for the role of quantum fluctuations in lowering the total energy of the system by increasing entropy and defect clustering. Our thorough and comprehensive application of an intentionally introduced noise on a quantum platform provides insight into the dynamics of defects and fluctuations in quantum devices, which may help to reduce the cost associated with quantum processing.

2.
Sci Adv ; 9(11): eadf6631, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36930709

RESUMO

Unveiling the fundamental dynamics of naturally or artificially formed magnetic quasicrystals in the presence of an external magnetic field remains a difficult problem that may have implications for the design of information processing devices. By embedding a qubit magnetic Penrose quasicrystal into a quantum annealer, we were able to reproduce the formation of magnetic phases driven by specific physical parameter selections, allowing us to distinguish a wide range of frustrated magnetic configurations at the single-spin scale. In our experiments, we observe some spins dynamically activate, while others remain static, all within an average magnetization space defined by competing structural and magnetic degrees of freedom. Static spin structure factors reveal ferromagnetic and ferrimagnetic modulations that are compatible with a variety of spin textures. This research demonstrates that introducing structural aperiodicity in magnetic devices that exploit spin degeneracy in a single, richly intraconnected finite object can enable the engineering of quantum states in both the effective low-temperature and thermally excited regimes.

3.
Nat Commun ; 14(1): 1105, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849545

RESUMO

Topological phases of spin liquids with constrained disorder can host a kinetics of fractionalized excitations. However, spin-liquid phases with distinct kinetic regimes have proven difficult to observe experimentally. Here we present a realization of kagome spin ice in the superconducting qubits of a quantum annealer, and use it to demonstrate a field-induced kinetic crossover between spin-liquid phases. Employing fine control over local magnetic fields, we show evidence of both the Ice-I phase and an unconventional field-induced Ice-II phase. In the latter, a charge-ordered yet spin-disordered topological phase, the kinetics proceeds via pair creation and annihilation of strongly correlated, charge conserving, fractionalized excitations. As these kinetic regimes have resisted characterization in other artificial spin ice realizations, our results demonstrate the utility of quantum-driven kinetics in advancing the study of topological phases of spin liquids.

4.
Patterns (N Y) ; 3(11): 100630, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36419449

RESUMO

Can data science guide researchers toward understanding superconductivity or discover new superconductors? We examine this question in light of a study in this issue of Patterns by Liu et al., who find that the superconducting transition temperature and certain computed energy intervals of the valence band are correlated.

5.
J Chem Theory Comput ; 18(7): 4177-4185, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35658437

RESUMO

Density matrix electronic structure theory is used in many quantum chemistry methods to "alleviate" the computational cost that arises from directly using wave functions. Although density matrix based methods are computationally more efficient than wave function based methods, significant computational effort is involved. Because the Schrödinger equation needs to be solved as an eigenvalue problem, the time-to-solution scales cubically with the system size in mean-field type approaches such as Hartree-Fock and density functional theory and is solved as many times in order to reach charge or field self-consistency. We hereby propose and study a method to compute the density matrix by using a quadratic unconstrained binary optimization (QUBO) solver. This method could be useful to solve the problem with quantum computers and, more specifically, quantum annealers. Our proposed approach is based on a direct construction of the density matrix using a QUBO eigensolver. We explore the main parameters of the algorithm focusing on precision and efficiency. We show that, while direct construction of the density matrix using a QUBO formulation is possible, the efficiency and precision have room for improvement. Moreover, calculations performed with quantum annealing on D-Wave's new Advantage quantum computer are compared with results obtained with classical simulated annealing, further highlighting some problems of the proposed method. We also suggest alternative methods that could lead to a more efficient QUBO-based density matrix construction.

6.
J Phys Condens Matter ; 34(9)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34818628

RESUMO

A detailed exploration of thef-atomic orbital occupancy space for UO2is performed using a first principles approach based on density functional theory (DFT), employing a full hybrid functional within a systematic basis set. Specifically, the PBE0 functional is combined with an occupancy biasing scheme implemented in a wavelet-based algorithm which is adapted to large supercells. The results are compared with previous DFT +Ucalculations reported in the literature, while dynamical mean field theory is also performed to provide a further base for comparison. This work shows that the computational complexity of the energy landscape of a correlatedf-electron oxide is much richer than has previously been demonstrated. The resulting calculations provide evidence of the existence of multiple previously unexplored metastable electronic states of UO2, including those with energies which are lower than previously reported ground states.

7.
Science ; 373(6554): 576-580, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34326242

RESUMO

Artificial spin ices are frustrated spin systems that can be engineered, in which fine tuning of geometry and topology has allowed the design and characterization of exotic emergent phenomena at the constituent level. Here, we report a realization of spin ice in a lattice of superconducting qubits. Unlike conventional artificial spin ice, our system is disordered by both quantum and thermal fluctuations. The ground state is classically described by the ice rule, and we achieved control over a fragile degeneracy point, leading to a Coulomb phase. The ability to pin individual spins allows us to demonstrate Gauss's law for emergent effective monopoles in two dimensions. The demonstrated qubit control lays the groundwork for potential future study of topologically protected artificial quantum spin liquids.

8.
Nano Lett ; 21(10): 4287-4291, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33974440

RESUMO

Excellent photovoltaic performance is predicted in a pentagonal covalent network of Si in a hollow structure exhibiting both thermal and dynamical stability. Consisting of a combination of sp2 and sp3 hybridized Si atomic orbitals, the GW0 computed band structure shows an indirect band gap near the zone edge and also a manifold of directly absorbing transitions at frequencies in the window of visible light, in distinction with conventional Si. Hydrogenation of a single sp2 site is predicted to lead to a robust local magnetic moment. We find a low formation energy at low pressure that is compatible with other experimentally known phases, suggesting that a stable phase might be obtained.

9.
Sci Rep ; 6: 33220, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27622775

RESUMO

We predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a direct consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap.

11.
ACS Nano ; 8(8): 8419-25, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25061660

RESUMO

We report experimental evidence of the formation by in situ electron-irradiation of single-walled carbon nanotubes (C-NT) confined within boron nitride nanotubes (BN-NT). The electron radiation stemming from the microscope supplies the energy required by the amorphous carbonaceous structures to crystallize in a tubular form in a catalyst-free procedure, at room temperature and high vacuum. The structural defects resulting from the interaction of the shapeless carbon with the BN nanotube are corrected in a self-healing process throughout the crystallinization. Structural changes developed during the irradiation process such as defects formation and evolution, shrinkage, and shortness of the BN-NT were in situ monitored. The outer BN wall provides a protective and insulating shell against environmental perturbations to the inner C-NT without affecting their electronic properties, as demonstrated by first-principles calculations.

12.
J Phys Chem Lett ; 5(10): 1711-8, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26270371

RESUMO

We report high-resolution scanning transmission electron microscopy images displaying a range of inclusions of isolated silicon atoms at the edges and inner zones of graphene layers. Whereas the incorporation of Si atoms to a graphene armchair edge involves no reconstruction of the neighboring carbon atoms, the inclusion of a Si atom to a zigzag graphene edge entails the formation of five-membered carbon rings. In all the observed atomic edge terminations, a Si atom is found bridging two C atoms in a 2-fold coordinated configuration. The atomic-scale observations are underpinned by first-principles calculations of the electronic and quantum transport properties of the structural anomalies. Experimental estimations of Si-doped graphene band gaps realized by means of transport measurements may be affected by a low doping rate of 2-fold coordinated Si atoms at the graphene edges, and 4-fold coordinated at inner zones due to the apparition of mobility gaps.

13.
ACS Nano ; 5(11): 9271-7, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21985521

RESUMO

We numerically investigate the impact of epoxide adsorbates on the transport properties of graphene nanoribbons with width varying from a few nanometers to 15 nm. For the wider ribbons, a scaling analysis of conductance properties is performed for adsorbate density ranging from 0.1% to 0.5%. Oxygen atoms introduce a large electron-hole transport asymmetry with mean free paths changing by up to 1 order of magnitude, depending on the hole or electron nature of charge carriers. The opening of a transport gap on the electron side for GNRs as wide as 15 nm could be further exploited to control current flow and achieve larger ON/OFF ratios, despite the initially small intrinsic energy gap. The effect of the adsorbates in narrow ribbons is also investigated by full ab initio calculations to explore the limit of ultimate downsized systems. In this case, the inhomogeneous distribution of adsorbates and their interplay with the ribbon edge are found to play an important role.

14.
Nano Lett ; 11(8): 3267-73, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21736341

RESUMO

Standard spin-polarized density functional theory calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag boron nitride nanoribbons (zBNNRs). Unlike the semiconducting and nonmagnetic H edge-terminated zBNNRs, the O edge-terminated zBNNRs have two energetically degenerate magnetic ground states with a ferrimagnetic character on the B edge, both of which are metallic. In contrast, the S edge-terminated zBNNRs are nonmagnetic albeit still metallic. An intriguing coexistence of two different Peierls-like distortions is observed for S edge-termination that manifests as a strong S dimerization at the B zigzag edge and a weak S trimerization at the N zigzag edge, dictated by the band fillings at the vicinity of the Fermi level. Nevertheless, metallicity is retained along the S wire on the N edge due to the partial filling of the band derived from the p(z) orbital of S. A second type of functionalization with O or S atoms embedded in the center of zBNNRs yields semiconducting features. Detailed examination of both types of functionalized zBNNRs reveals that the p orbitals on O or S play a crucial role in mediating the electronic structures of the ribbons. We suggest that O and S functionalization of zBNNRs may open new routes toward practical electronic devices based on boron nitride materials.

15.
ACS Nano ; 4(4): 1971-6, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20355732

RESUMO

We present first-principles transport calculations of graphene nanoribbons with chemically reconstructed edge profiles. Depending on the geometry of the defect and the degree of hydrogenation, spectacularly different transport mechanisms are obtained. In the case of monohydrogenated pentagon (heptagon) defects, an effective acceptor (donor) character results in strong electron-hole conductance asymmetry. In contrast, weak backscattering is obtained for defects that preserve the benzenoid structure of graphene. Based on a tight-binding model derived from ab initio calculations, evidence for large conductance scaling fluctuations are found in disordered ribbons with lengths up to the micrometer scale.

16.
Nano Lett ; 9(7): 2537-41, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19505128

RESUMO

We report first-principles transport calculations in chemically functionalized graphene nanoribbons. The effect of the joint attachment of hydroxyl and hydrogen groups on the graphene surface is investigated as a function of defect location and coverage density. The chemical bonding of a single defect pair (C-OH and C-H) is shown to considerably alter the conduction capability of ribbon channels, similarly to an sp(3) type of defect. With transport calculations in disordered ribbons with lengths up to the micrometer scale, the elastic mean free paths and conduction regimes are analyzed. Even in the low grafting density limit, transport properties are found to be severely damaged by the functionalization, indicating a strong tendency toward an insulating regime.


Assuntos
Algoritmos , Grafite/química , Nanoestruturas/química , Condutividade Elétrica , Hidrogênio/química , Hidróxidos
17.
Nano Lett ; 9(3): 940-4, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19191494

RESUMO

We present first-principles calculations of quantum transport in chemically functionalized metallic carbon nanotubes with lengths reaching the micrometer scale and random distributions of functional groups. Two typical cases are investigated, namely, a sp2-type bonding between carbene groups (CH2) and the nanotube sidewalls and a sp3-type bonding of nanotubes with paired phenyl groups. For similar molecular coverage density, charge transport is found to range from a quasi-ballistic-like to a strongly diffusive regime, with corresponding mean free paths changing by orders of magnitude depending on the nature of the chemical bonding.


Assuntos
Nanotecnologia/métodos , Nanotubos de Carbono/química , Algoritmos , Carbono/química , Difusão , Elasticidade , Metais/química , Modelos Químicos , Conformação Molecular , Nanotubos/química , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA