Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiologyopen ; 13(2): e1405, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38481089

RESUMO

Ascidians, known for their color variation, host species-specific microbial symbiont communities. Some ascidians can also transition into a nonfiltering (resting) physiological state. Recent studies suggest that the microbial symbiont communities may vary across different physiological states and color morphs of the host. The colonial ascidian, Polyclinum constellatum, which exhibits several color morphs in the Caribbean Sea, periodically ceases its filtering activity. To investigate if color variation in P. constellatum is indicative of sibling speciation, we sequenced fragments of the ribosomal 18S rRNA and the mitochondrial cytochrome oxidase subunit I genes. Additionally, we sequenced a fragment of the 16S rRNA gene to characterize the microbial communities of two common color morphs (red and green) in colonies that were either actively filtering (active) or nonfiltering (resting). Phylogenetic analyses of both ascidian genes resulted in well-supported monophyletic clades encompassing all color variants of P. constellatum. Interestingly, no significant differences were observed among the microbial communities of the green and red morphs, suggesting that color variation in this species is a result of intraspecific variation. However, the host's physiological state significantly influenced the microbial community structure. Nonfiltering (resting) colonies hosted higher relative abundances of Kiloniella (Alphaproteobacteria) and Fangia (Gammaproteobacteria), while filtering colonies hosted more Reugeria (Alphaproteobacteria) and Endozoicomonas (Gammaproteobacteria). This study demonstrates that microbial symbiont communities serve as reliable indicators of the taxonomic state of their host and are strongly influenced by the host's feeding condition.


Assuntos
Alphaproteobacteria , Gammaproteobacteria , Microbiota , Urocordados , Animais , Urocordados/genética , Urocordados/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Microbiota/genética , Gammaproteobacteria/genética , Alphaproteobacteria/genética
2.
Environ Microbiol Rep ; 16(1): e13242, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38383831

RESUMO

Ascidians are marine invertebrates known to occasionally host symbiotic crustaceans. Although the microbiomes of both ascidians and free-living crustaceans have been characterized, there is no documentation of microbial communities in an ascidian-crustacean symbiosis. Samples of the solitary ascidian Ascidia sydneiensis and ambient seawater were collected in Belize. Four symbiotic amphipod crustaceans were retrieved from the branchial sac of the animal, and their microbiomes were compared with those from their ascidian host (tunic and branchial sac compartments) and seawater. Microbiome richness and diversity differed significantly between sample types, with amphipod microbiomes exhibiting significantly lower diversity than tunic and ambient seawater samples. Microbiome composition also differed significantly between sample types and among all pairwise comparisons, except for branchial sac and amphipod microbiomes. Differential operational taxonomic unit (OTU) analyses revealed that only 3 out of 2553 OTUs had significantly different relative abundances in amphipods compared with ascidian branchial sacs, whereas 72 OTUs differed between amphipod and tunic and 315 between amphipod and seawater samples. Thus, different body compartments of A. sydneiensis hosted distinct microbiomes, and symbiotic amphipods contained microbiomes resembling the region they inhabit (i.e., the branchial sac), suggesting that environmental filtering and co-evolutionary processes are determinants of microbiome composition within ascidian-crustacean symbioses.


Assuntos
Microbiota , Urocordados , Animais , Bactérias/genética , Simbiose , RNA Ribossômico 16S
3.
Genesis ; 61(6): e23534, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37452390
4.
Environ Sci Pollut Res Int ; 30(3): 6805-6817, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36002791

RESUMO

Ascidians or sea squirts are among the marine taxa with the most introduced species worldwide. These animals have a suite of biological characteristics that contribute to their successful establishment, including long reproductive seasons, rapid growth rates, and resistance to pollution. Here, we sequenced a fragment of the 16S ribosomal RNA gene to characterize symbiont diversity and host-specificity in the solitary species Syela clava and Ascidiella aspersa, and the colonial species Didemnum vexillum. Samples were collected from introduced populations in several marinas and mussel facilities around Ireland, and a marina in New Zealand. Two additional colonial species Botrylloides violaceus and Didemnum sp. were collected in Ireland, and ambient seawater was sampled from both countries for comparison. Data revealed a strong effect of host species and location on prokaryote symbiont composition, consistent with recent ascidian microbiome literature. However, a location effect did not manifest in alpha diversity metrics (e.g., the same ascidian species at different locations exhibited similar diversity) but was evident in beta diversity metrics (greater intra-specific differences across locations than within locations). Location effects were stronger than species effects only for the solitary species (i.e., A. aspersa from New Zealand was more similar to S. clava from New Zealand than to A. aspersa from Ireland). D. vexillum and A. aspersa hosted a high abundance of prokaryotic symbionts that were previously found in other ascidian species, while S. clava symbiotic community was more closely related to bacteria common in the marine environment. Further studies should aim to unravel host-microbe coevolutionary patterns and the microbial role in facilitating host establishment in different habitats.


Assuntos
Microbiota , Urocordados , Animais , Urocordados/microbiologia , Irlanda , Nova Zelândia , Bactérias/genética , Espécies Introduzidas , RNA Ribossômico 16S/genética , Filogenia
5.
Mar Pollut Bull ; 167: 112262, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33773417

RESUMO

Ascidians are an ideal taxon to study invasion processes: they require anthropogenic introduction vectors for long-distance dispersal, are easy to collect and monitor, and are abundant on artificial substrates. In March 2019 we surveyed 11 harbors around Puerto Rico and recorded 47 ascidian species. Eleven of these were only identified to the genus level or above based on morphological or genetic characterization. The remaining 36 species were classified as: 11 introduced (7 with worldwide distributions), 13 cryptogenic, and 12 native. We report the occurrence of Phallusia cf. philippinensis in the Atlantic for the first time. Ascidian community structure did not differ significantly across geographic locations and distances between marinas, while marina size had a significant effect on species richness and composition. Stakeholder involvement and periodic monitoring efforts are essential to detect the arrival of new species and the spread of already introduced ones to natural habitats.


Assuntos
Urocordados , Animais , Ecossistema , Hispânico ou Latino , Humanos , Espécies Introduzidas , Porto Rico
6.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33127817

RESUMO

Ascidians are prolific colonizers of new environments and possess a range of well-studied features that contribute to their successful spread, but the role of their symbiotic microbial communities in their long-term establishment is mostly unknown. In this study, we utilized next-generation amplicon sequencing to provide a comprehensive description of the microbiome in the colonial ascidian Clavelina oblonga and examined differences in the composition, diversity, and structure of symbiont communities in the host's native and invasive ranges. To identify host haplotypes, we sequenced a fragment of the mitochondrial gene cytochrome c oxidase subunit I (COI). C. oblonga harbored a diverse microbiome spanning 42 bacterial and three archaeal phyla. Colonies in the invasive range hosted significantly less diverse symbiont communities and exhibited lower COI haplotype diversity than colonies in the native range. Differences in microbiome structure were also detected across colonies in the native and invasive range, driven largely by novel bacteria representing symbiont lineages with putative roles in nitrogen cycling. Variability in symbiont composition was also observed among sites within each range. Together, these data suggest that C. oblonga hosts a dynamic microbiome resulting from (i) reductions in symbiont diversity due to founder effects in host populations and (ii) environmental selection of symbiont taxa in response to new habitats within a range. Further investigation is required to document the mechanisms behind these changes and to determine how changes in microbiome structure relate to holobiont function and the successful establishment of C. oblonga worldwide.IMPORTANCE Nonnative species destabilize coastal ecosystems and microbial symbionts may facilitate their spread by enhancing host survival and fitness. However, we know little of the microorganisms that live inside invasive species and whether they change as the host spreads to new areas. In this study, we investigated the microbial communities of an introduced ascidian (Clavelina oblonga) and tracked symbiont changes across locations within the host's native and invasive ranges. Ascidians in the invasive range had less-diverse microbiomes, as well as lower host haplotype diversity, suggesting that specific colonies reach new locations and carry select symbionts from native populations (i.e., founder effects). Further, ascidians in the invasive range hosted a different composition of symbionts, including microbes with the potential to aid in processes related to invasion success (e.g., nutrient cycling). We conclude that the putative functionality and observed flexibility of this introduced ascidian microbiome may represent an underappreciated factor in the successful establishment of nonnative species in new environments.


Assuntos
Espécies Introduzidas , Microbiota , Urocordados/microbiologia , Animais , Bactérias/genética , Brasil , Código de Barras de DNA Taxonômico , Florida , Itália , North Carolina , RNA Ribossômico 16S/genética , Água do Mar , South Carolina , Espanha , Simbiose , Urocordados/genética
7.
BMC Evol Biol ; 19(1): 24, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651060

RESUMO

BACKGROUND: Knowledge about the distribution of the genetic variation of marine species is fundamental to address species conservation and management strategies, especially in scenarios with mass mortalities. In the Mediterranean Sea, Petrosia ficiformis is one of the species most affected by temperature-related diseases. Our study aimed to assess its genetic structure, connectivity, and bottleneck signatures to understand its evolutionary history and to provide information to help design conservation strategies of sessile marine invertebrates. RESULTS: We genotyped 280 individuals from 19 locations across the entire distribution range of P. ficiformis in the Atlanto-Mediterranean region at 10 microsatellite loci. High levels of inbreeding were detected in most locations (especially in the Macaronesia and the Western Mediterranean) and bottleneck signatures were only detected in Mediterranean populations, although not coinciding entirely with those with reported die-offs. We detected strong significant population differentiation, with the Atlantic populations being the most genetically isolated, and show that six clusters explained the genetic structure along the distribution range of this sponge. Although we detected a pattern of isolation by distance in P. ficiformis when all locations were analyzed together, stratified Mantel tests revealed that other factors could be playing a more prominent role than isolation by distance. Indeed, we detected a strong effect of oceanographic barriers impeding the gene flow among certain areas, the strongest one being the Almeria-Oran front, hampering gene flow between the Atlantic Ocean and the Mediterranean Sea. Finally, migration and genetic diversity distribution analyses suggest a Mediterranean origin for the species. CONCLUSIONS: In our study Petrosia ficiformis showed extreme levels of inbreeding and population differentiation, which could all be linked to the poor swimming abilities of the larva. However, the observed moderate migration patterns are highly difficult to reconcile with such poor larval dispersal, and suggest that, although unlikely, dispersal may also be achieved in the gamete phase. Overall, because of the high genetic diversity in the Eastern Mediterranean and frequent mass mortalities in the Western Mediterranean, we suggest that conservation efforts should be carried out specifically in those areas of the Mediterranean to safeguard the genetic diversity of the species.


Assuntos
Fluxo Gênico , Variação Genética , Petrosia/genética , Migração Animal/fisiologia , Animais , Organismos Aquáticos/genética , Oceano Atlântico , Genética Populacional , Genótipo , Geografia , Mar Mediterrâneo , Densidade Demográfica
8.
Microb Ecol ; 78(1): 170-184, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30411189

RESUMO

Ascidians (Chordata, Ascidiacea) are considered to be prominent marine invaders, able to tolerate highly polluted environments and fluctuations in salinity and temperature. Here, we examined the seasonal and spatial dynamics of the microbial communities in the inner-tunic of two invasive ascidians, Styela plicata (Lesueur 1823) and Herdmania momus (Savigny 1816), in order to investigate the changes that occur in the microbiome of non-indigenous ascidians in different environments. Microbial communities were characterized using next-generation sequencing of partial (V4) 16S rRNA gene sequences. A clear differentiation between the ascidian-associated microbiome and bacterioplankton was observed, and two distinct sets of operational taxonomic units (OTUs), one core and the other dynamic, were recovered from both species. The relative abundance of the dynamic OTUs in H. momus was higher than in S. plicata, for which core OTU structure was maintained independently of location. Ten and seventeen core OTUs were identified in S. plicata and H. momus, respectively, including taxa with reported capabilities of carbon fixing, ammonia oxidization, denitrification, and heavy-metal processing. The ascidian-sourced dynamic OTUs clustered in response to site and season but significantly differed from the bacterioplankton community structure. These findings suggest that the associations between invasive ascidians and their symbionts may enhance host functionality while maintaining host adaptability to changing environmental conditions.


Assuntos
Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Microbiota , Simbiose , Urocordados/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Comportamento Predatório , RNA Ribossômico 16S/genética , Urocordados/microbiologia
10.
Microbes Environ ; 33(4): 435-439, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487350

RESUMO

Various DNA extraction methods are often used interchangeably for the characterization of microbial communities despite indications that different techniques produce disparate results. The microbiomes of two ascidian species were herein characterized using two common DNA extraction kits, the DNeasy Blood and Tissue Kit (Qiagen) and the PowerSoil DNA Isolation Kit (Mo Bio Laboratories), followed by next-generation (Illumina) sequencing of partial 16S rRNA genes. Significant differences were detected in microbial community diversity and structure between ascidian species, but not between kits, suggesting similar recovery of biological variation and low technical variation between the two extraction methods for ascidian microbiome characterization.


Assuntos
Bactérias/genética , DNA Bacteriano/isolamento & purificação , Técnicas Genéticas/normas , Microbiota/genética , Simbiose , Urocordados/microbiologia , Animais , Bactérias/isolamento & purificação , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA
11.
FEMS Microbiol Ecol ; 94(9)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052904

RESUMO

Harbor systems represent passive gateways for the introduction of nonnative ascidians that compete with the surrounding benthos and may spread through localized dispersal, even populating adjacent natural reefs. To investigate the potential role of microbial symbionts in the success of ascidian introductions and spread, we evaluated the host-specificity of prokaryotic communities within two ascidian species commonly found off the North Carolina coast. Replicate samples of the native ascidian Eudistoma capsulatum, the nonnative ascidian Distaplia bermudensis and seawater were collected from artificial (harbor) and natural reef substrates. Prokaryotic communities in seawater samples and ascidian tunics were characterized via next-generation sequencing of partial 16S rRNA gene sequences. Ascidian microbiomes clustered strongly in response to host species, with significant differences in community structure between the two species and seawater. Further, symbiont community structure differed significantly between E. capsulatumindividuals collected from artificial and natural habitats, though this was not the case for D. bermudensis. These findings suggested that some ascidian species possess stable microbial symbiont communities that allow them to thrive in a wide range of habitats, while other species rely on the restructuring of their microbial communities with specific symbionts (e.g. Chelativorans) to survive under particular environmental conditions such as increased pollution.


Assuntos
Ecossistema , Microbiota , Simbiose , Urocordados/microbiologia , Animais , Especificidade de Hospedeiro , Espécies Introduzidas , Microbiota/genética , North Carolina , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Urocordados/classificação
12.
Sci Rep ; 8(1): 6496, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29679016

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

13.
BMC Biol ; 16(1): 39, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29653534

RESUMO

BACKGROUND: Tunicates are the closest relatives of vertebrates and are widely used as models to study the evolutionary developmental biology of chordates. Their phylogeny, however, remains poorly understood, and to date, only the 18S rRNA nuclear gene and mitogenomes have been used to delineate the major groups of tunicates. To resolve their evolutionary relationships and provide a first estimate of their divergence times, we used a transcriptomic approach to build a phylogenomic dataset including all major tunicate lineages, consisting of 258 evolutionarily conserved orthologous genes from representative species. RESULTS: Phylogenetic analyses using site-heterogeneous CAT mixture models of amino acid sequence evolution resulted in a strongly supported tree topology resolving the relationships among four major tunicate clades: (1) Appendicularia, (2) Thaliacea + Phlebobranchia + Aplousobranchia, (3) Molgulidae, and (4) Styelidae + Pyuridae. Notably, the morphologically derived Thaliacea are confirmed as the sister group of the clade uniting Phlebobranchia + Aplousobranchia within which the precise position of the model ascidian genus Ciona remains uncertain. Relaxed molecular clock analyses accommodating the accelerated evolutionary rate of tunicates reveal ancient diversification (~ 450-350 million years ago) among the major groups and allow one to compare their evolutionary age with respect to the major vertebrate model lineages. CONCLUSIONS: Our study represents the most comprehensive phylogenomic dataset for the main tunicate lineages. It offers a reference phylogenetic framework and first tentative timescale for tunicates, allowing a direct comparison with vertebrate model species in comparative genomics and evolutionary developmental biology studies.


Assuntos
Evolução Molecular , Genômica/métodos , Filogenia , Transcriptoma/genética , Urocordados/genética , Animais , RNA Ribossômico 18S/genética , Urocordados/classificação
14.
Mar Environ Res ; 131: 236-242, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29033007

RESUMO

Marine environments are constantly impacted by bioinvasions. Invasive ascidians (Chordata, Tunicata) are well-known for their ability to rapidly overgrow any available substrate. While the majority of studies have investigated the factors contributing to the successful establishment of ascidians on artificial substrates, the anthropogenic factors that contribute to such establishment on natural substrates have rarely been investigated. Here, we studied non-indigenous ascidians presence on natural substrate for the first time, using underwater field surveys at eight natural sites along the Israeli Mediterranean coast, in order to provide an analysis of factors assisting their establishment. The findings revealed that sites exposed to extended sewage-spill events experimented a reduction in native ascidian species. Understanding which factors alter ascidian population is essential for further monitoring efforts, to protect areas that are more susceptible to invasion, and for developing effective management tools to control further spread of invasive species in natural environments.


Assuntos
Monitoramento Ambiental , Espécies Introduzidas , Urocordados/fisiologia , Animais , Ecossistema
15.
Gigascience ; 6(10): 1-7, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29020741

RESUMO

Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal, and environmental scales. Samples from marine sponges (n = 3569 specimens), seawater (n = 370), marine sediments (n = 65) and other environments (n = 29) were collected from different locations across the globe. This dataset incorporates at least 268 different sponge species, including several yet unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed and clustered with (i) a standard protocol using QIIME closed-reference picking resulting in 39 543 operational taxonomic units (OTU) at 97% sequence identity, (ii) a de novo clustering using Mothur resulting in 518 246 OTUs, and (iii) a new high-resolution Deblur protocol resulting in 83 908 unique bacterial sequences. Abundance tables, representative sequences, taxonomic classifications, and metadata are provided. This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host specificity, convergent evolution, environmental drivers of microbiome structure, and the sponge-associated rare biosphere.


Assuntos
Microbiota , Poríferos/microbiologia , Animais , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Sci Rep ; 7(1): 11033, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887506

RESUMO

Many ascidian species have experienced worldwide introductions, exhibiting remarkable success in crossing geographic borders and adapting to local environmental conditions. To investigate the potential role of microbial symbionts in these introductions, we examined the microbial communities of three ascidian species common in North Carolina harbors. Replicate samples of the globally introduced species Distaplia bermudensis, Polyandrocarpa anguinea, and P. zorritensis (n = 5), and ambient seawater (n = 4), were collected in Wrightsville Beach, NC. Microbial communities were characterized by next-generation (Illumina) sequencing of partial (V4) 16S rRNA gene sequences. Ascidians hosted diverse symbiont communities, consisting of 5,696 unique microbial OTUs (at 97% sequenced identity) from 47 bacterial and three archaeal phyla. Permutational multivariate analyses of variance revealed clear differentiation of ascidian symbionts compared to seawater bacterioplankton, and distinct microbial communities inhabiting each ascidian species. 103 universal core OTUs (present in all ascidian replicates) were identified, including taxa previously described in marine invertebrate microbiomes with possible links to ammonia-oxidization, denitrification, pathogenesis, and heavy-metal processing. These results suggest ascidian microbial symbionts exhibit a high degree of host-specificity, forming intimate associations that may contribute to host adaptation to new environments via expanded tolerance thresholds and enhanced holobiont function.


Assuntos
Archaea/classificação , Bactérias/classificação , Biota , Urocordados/microbiologia , Animais , Archaea/genética , Bactérias/genética , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala , North Carolina , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
17.
FEMS Microbiol Lett ; 364(11)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28520957

RESUMO

Marine sponges have been shown to harbor diverse microbial symbiont communities that play key roles in host functioning, yet little is known about how anthropogenic disturbances impact sponge-microbe interactions. The Mediterranean sponge Crambe crambe is known to accumulate heavy metals in polluted harbors. In this study, we investigated whether the microbiome of C. crambe differed between sponges inhabiting a polluted harbor in Blanes (Spain) and a nearby (<1 km) natural environment. Triplicate sponge and ambient seawater samples were collected from each site and the microbial composition of each sample was determined by 16S rRNA gene sequence analysis (Illumina Hi-Seq platform). No significant differences in the diversity or structure of microbial communities in C. crambe were detected between habitats, while a significant difference in community structure was observed in ambient seawater inside and outside of the polluted harbor. The microbiome of C. crambe was clearly differentiated from free-living seawater microbes and dominated by Proteobacteria, specifically a single betaproteobacterium that accounted for >86% of all sequence reads. These results indicate that sponge microbiomes exhibit greater stability and pollution tolerance than their free-living microbial counterparts, potentially mitigating the effects of pollutants on coastal marine communities.


Assuntos
Betaproteobacteria/isolamento & purificação , Crambe (Esponja)/microbiologia , Microbiota/genética , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Betaproteobacteria/classificação , DNA Bacteriano/genética , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Espanha , Microbiologia da Água
18.
Front Microbiol ; 8: 752, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533766

RESUMO

The dichotomy between high microbial abundance (HMA) and low microbial abundance (LMA) sponges has been observed in sponge-microbe symbiosis, although the extent of this pattern remains poorly unknown. We characterized the differences between the microbiomes of HMA (n = 19) and LMA (n = 17) sponges (575 specimens) present in the Sponge Microbiome Project. HMA sponges were associated with richer and more diverse microbiomes than LMA sponges, as indicated by the comparison of alpha diversity metrics. Microbial community structures differed between HMA and LMA sponges considering Operational Taxonomic Units (OTU) abundances and across microbial taxonomic levels, from phylum to species. The largest proportion of microbiome variation was explained by the host identity. Several phyla, classes, and OTUs were found differentially abundant in either group, which were considered "HMA indicators" and "LMA indicators." Machine learning algorithms (classifiers) were trained to predict the HMA-LMA status of sponges. Among nine different classifiers, higher performances were achieved by Random Forest trained with phylum and class abundances. Random Forest with optimized parameters predicted the HMA-LMA status of additional 135 sponge species (1,232 specimens) without a priori knowledge. These sponges were grouped in four clusters, from which the largest two were composed of species consistently predicted as HMA (n = 44) and LMA (n = 74). In summary, our analyses shown distinct features of the microbial communities associated with HMA and LMA sponges. The prediction of the HMA-LMA status based on the microbiome profiles of sponges demonstrates the application of machine learning to explore patterns of host-associated microbial communities.

19.
PeerJ ; 4: e2158, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27366653

RESUMO

Spatio-temporal changes in genetic structure among populations provide crucial information on the dynamics of secondary spread for introduced marine species. However, temporal components have rarely been taken into consideration when studying the population genetics of non-indigenous species. This study analysed the genetic structure of Styela plicata, a solitary ascidian introduced in harbours and marinas of tropical and temperate waters, across spatial and temporal scales. A fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) was sequenced from 395 individuals collected at 9 harbours along the NW Mediterranean coast and adjacent Atlantic waters (> 1,200 km range) at two time points 5 years apart (2009 and 2014). The levels of gene diversity were relatively low for all 9 locations in both years. Analyses of genetic differentiation and distribution of molecular variance revealed strong genetic structure, with significant differences among many populations, but no significant differences among years. A weak and marginally significant correlation between geographic distance and gene differentiation was found. Our results revealed spatial structure and temporal genetic homogeneity in S. plicata, suggesting a limited role of recurrent, vessel-mediated transport of organisms among small to medium-size harbours. Our study area is representative of many highly urbanized coasts with dense harbours. In these environments, the episodic chance arrival of colonisers appears to determine the genetic structure of harbour populations and the genetic composition of these early colonising individuals persists in the respective harbours, at least over moderate time frames (five years) that encompass ca. 20 generations of S. plicata.

20.
Front Microbiol ; 7: 1042, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27462299

RESUMO

Ascidians are marine filter feeders and harbor diverse microbiota that can exhibit a high degree of host-specificity. Pharyngeal samples of Scandinavian and Mediterranean ascidians were screened for consistently associated bacteria by culture-dependent and -independent approaches. Representatives of the Endozoicomonas (Gammaproteobacteria, Hahellaceae) clade were detected in the ascidian species Ascidiella aspersa, Ascidiella scabra, Botryllus schlosseri, Ciona intestinalis, Styela clava, and multiple Ascidia/Ascidiella spp. In total, Endozoicomonas was detected in more than half of all specimens screened, and in 25-100% of the specimens for each species. The retrieved Endozoicomonas 16S rRNA gene sequences formed an ascidian-specific subclade, whose members were detected by fluorescence in situ hybridization (FISH) as extracellular microcolonies in the pharynx. Two strains of the ascidian-specific Endozoicomonas subclade were isolated in pure culture and characterized. Both strains are chemoorganoheterotrophs and grow on mucin (a mucus glycoprotein). The strains tested negative for cytotoxic or antibacterial activity. Based on these observations, we propose ascidian-associated Endozoicomonas to be commensals, living off the mucus continuously secreted into the pharynx. Members of the ascidian-specific Endozoicomonas subclade were also detected in seawater from the Scandinavian sampling site, which suggests acquisition of the symbionts by horizontal transmission. The combined results indicate a host-specific, yet facultative symbiosis between ascidians and Endozoicomonas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA