Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 194: 106487, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552722

RESUMO

Pyk2 has been shown previously to be involved in several psychological and cognitive alterations related to stress, Huntington's disease, and Alzheimer's disease. All these disorders are accompanied by different types of impairments in sociability, which has recently been linked to improper mitochondrial function. We hypothesize that Pyk2, which regulates mitochondria, could be associated with the regulation of mitochondrial dynamics and social skills. In the present manuscript, we report that a reduction of Pyk2 levels in mouse pyramidal neurons of the hippocampus decreased social dominance and aggressivity. Furthermore, social interactions induced robust Pyk2-dependent hippocampal changes in several oxidative phosphorylation complexes. We also observed that Pyk2 levels were increased in the CA1 pyramidal neurons of schizophrenic subjects, occurring alongside changes in different direct and indirect regulators of mitochondrial function including DISC1 and Grp75. Accordingly, overexpressing Pyk2 in hippocampal CA1 pyramidal cells mimicked some specific schizophrenia-like social behaviors in mice. In summary, our results indicate that Pyk2 might play a role in regulating specific social skills likely via mitochondrial dynamics and that there might be a link between Pyk2 levels in hippocampal neurons and social disturbances in schizophrenia.


Assuntos
Quinase 2 de Adesão Focal , Esquizofrenia , Humanos , Camundongos , Animais , Quinase 2 de Adesão Focal/metabolismo , Habilidades Sociais , Hipocampo/metabolismo , Células Piramidais/metabolismo
2.
Neurobiol Dis ; 184: 106225, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442396

RESUMO

Increasing evidence indicates that a key factor in neurodegenerative diseases is the activation of the unfolded protein response (UPR) caused by an accumulation of misfolded proteins in the endoplasmic reticulum (ER stress). Particularly, in Huntington's disease (HD) mutant huntingtin (mHtt) toxicity involves disruption of the ER-associated degradation pathway and loss of the ER protein homeostasis leading to neuronal dysfunction and degeneration. Besides the role of the UPR in regulating cell survival and death, studies that demonstrate the contribution of sustained UPR activation, particularly of PERK signaling, in memory disturbances and synaptic plasticity deficiencies are emerging. Given the contribution of hippocampal dysfunction to emotional and cognitive deficits seen in HD, we have analyzed the involvement of ER stress in HD memory alterations. We have demonstrated that at early disease stages, ER stress activation manifested as an increase in GRP78 and CHOP is observed in the hippocampus of R6/1 mice. Genetic reduction of GRP78 expression resulted in preventing hippocampal-dependent memory alterations but no motor deficits. Accordingly, hippocampal neuropathology namely, dendritic spine loss and accumulation of mHtt aggregates was ameliorated by GRP78 reduction. To elucidate the signaling pathways, we found that the inactivation of PERK by GSK2606414 restored spatial and recognition memories in R6/1 mice and rescued dendritic spine density in CA1 pyramidal neurons and protein levels of some specific immediate early genes. Our study unveils the critical role of the GRP78/PERK axis in memory impairment in HD mice and suggests the modulation of PERK activation as a novel therapeutic target for HD intervention.


Assuntos
Transtornos Cognitivos , Chaperona BiP do Retículo Endoplasmático , Doença de Huntington , Animais , Camundongos , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático/metabolismo , Proteína Huntingtina/genética , Doença de Huntington/metabolismo , Transtornos da Memória/etiologia , Camundongos Transgênicos
3.
Front Pharmacol ; 13: 791666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281935

RESUMO

Glycogen synthase kinase 3ß (GSK3ß) is a core protein, with a relevant role in many neurodegenerative disorders including Alzheimer's disease. The enzyme has been largely studied as a potential therapeutic target for several neurological diseases. Unfortunately, preclinical and clinical studies with several GSK3ß inhibitors have failed due to many reasons such as excessive toxicity or lack of effects in human subjects. We previously reported that meridianins are potent GSK3ß inhibitors without altering neuronal viability. In the present work, we examine whether meridianins are capable to inhibit neural GSK3ß in vivo and if such inhibition induces improvements in the 5xFAD mouse model of Alzheimer's Disease. Direct administration of meridianins in the third ventricle of 5xFAD mice induced robust improvements of recognition memory and cognitive flexibility as well as a rescue of the synaptic loss and an amelioration of neuroinflammatory processes. In summary, our study points out meridianins as a potential compound to treat neurodegenerative disorders associated with an hyperactivation of GSK3ß such as Alzheimer's disease.

4.
Cells ; 11(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269464

RESUMO

Pyk2 is a non-receptor tyrosine kinase enriched in hippocampal neurons, which can be activated by calcium-dependent mechanisms. In neurons, Pyk2 is mostly localised in the cytosol and dendritic shafts but can translocate to spines and/or to the nucleus. Here, we explore the function of a new localisation of Pyk2 in mitochondria-associated membranes (MAMs), a subdomain of ER-mitochondria surface that acts as a signalling hub in calcium regulation. To test the role of Pyk2 in MAMs' calcium transport, we used full Pyk2 knockout mice (Pyk2-/-) for in vivo and in vitro studies. Here we report that Pyk2-/- hippocampal neurons present increased ER-mitochondrial contacts along with defective calcium homeostasis. We also show how the absence of Pyk2 modulates mitochondrial dynamics and morphology. Taken all together, our results point out that Pyk2 could be highly relevant in the modulation of ER-mitochondria calcium efflux, affecting in turn mitochondrial function.


Assuntos
Cálcio , Quinase 2 de Adesão Focal/metabolismo , Dinâmica Mitocondrial , Animais , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo
5.
Neurobiol Dis ; 136: 104741, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31931142

RESUMO

Mitochondria-associated membranes (MAMs) are dynamic structures that communicate endoplasmic reticulum (ER) and mitochondria allowing calcium transfer between these two organelles. Since calcium dysregulation is an important hallmark of several neurodegenerative diseases, disruption of MAMs has been speculated to contribute to pathological features associated with these neurodegenerative processes. In Huntington's disease (HD), mutant huntingtin induces the selective loss of medium spiny neurons within the striatum. The cause of this specific susceptibility remain unclear. However, defects on mitochondrial dynamics and bioenergetics have been proposed as critical contributors, causing accumulation of fragmented mitochondria and subsequent Ca2+ homeostasis alterations. In the present work, we show that aberrant Drp1-mediated mitochondrial fragmentation within the striatum of HD mutant mice, forces mitochondria to place far away from the ER disrupting the ER-mitochondria association and therefore causing drawbacks in Ca2+ efflux and an excessive production of mitochondria superoxide species. Accordingly, inhibition of Drp1 activity by Mdivi-1 treatment restored ER-mitochondria contacts, mitochondria dysfunction and Ca2+ homeostasis. In sum, our results give new insight on how defects on mitochondria dynamics may contribute to striatal vulnerability in HD and highlights MAMs dysfunction as an important factor involved in HD striatal pathology.


Assuntos
Cálcio/metabolismo , Corpo Estriado/metabolismo , Retículo Endoplasmático/metabolismo , Doença de Huntington/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Cultivadas , Corpo Estriado/patologia , Retículo Endoplasmático/patologia , Homeostase/fisiologia , Doença de Huntington/genética , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Mitocôndrias/patologia
6.
J Neurosci ; 39(13): 2441-2458, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30700530

RESUMO

It has been well documented that neurotrophins, including brain-derived neurotrophic factor (BDNF), are severely affected in Alzheimer's disease (AD), but their administration faces a myriad of technical challenges. Here we took advantage of the early astrogliosis observed in an amyloid mouse model of AD (5xFAD) and used it as an internal sensor to administer BDNF conditionally and locally. We first demonstrate the relevance of BDNF release from astrocytes by evaluating the effects of coculturing WT neurons and BDNF-deficient astrocytes. Next, we crossed 5xFAD mice with pGFAP:BDNF mice (only males were used) to create 5xFAD mice that overexpress BDNF when and where astrogliosis is initiated (5xF:pGB mice). We evaluated the behavioral phenotype of these mice. We first found that BDNF from astrocytes is crucial for dendrite outgrowth and spine number in cultured WT neurons. Double-mutant 5xF:pGB mice displayed improvements in cognitive tasks compared with 5xFAD littermates. In these mice, there was a rescue of BDNF/TrkB downstream signaling activity associated with an improvement of dendritic spine density and morphology. Clusters of synaptic markers, PSD-95 and synaptophysin, were also recovered in 5xF:pGB compared with 5xFAD mice as well as the number of presynaptic vesicles at excitatory synapses. Additionally, experimentally evoked LTP in vivo was increased in 5xF:pGB mice. The beneficial effects of conditional BDNF production and local delivery at the location of active neuropathology highlight the potential to use endogenous biomarkers with early onset, such as astrogliosis, as regulators of neurotrophic therapy in AD.SIGNIFICANCE STATEMENT Recent evidence places astrocytes as pivotal players during synaptic plasticity and memory processes. In the present work, we first provide evidence that astrocytes are essential for neuronal morphology via BDNF release. We then crossed transgenic mice (5xFAD mice) with the transgenic pGFAP-BDNF mice, which express BDNF under the GFAP promoter. The resultant double-mutant mice 5xF:pGB mice displayed a full rescue of hippocampal BDNF loss and related signaling compared with 5xFAD mice and a significant and specific improvement in all the evaluated cognitive tasks. These improvements did not correlate with amelioration of ß amyloid load or hippocampal adult neurogenesis rate but were accompanied by a dramatic recovery of structural and functional synaptic plasticity.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Plasticidade Neuronal , Doença de Alzheimer/complicações , Animais , Células Cultivadas , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos
7.
Exp Neurol ; 307: 62-73, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29803828

RESUMO

Pyk2 is a Ca2+-activated non-receptor tyrosine kinase enriched in forebrain neurons and involved in synaptic regulation. Human genetic studies associated PTK2B, the gene coding Pyk2, with risk for Alzheimer's disease (AD). We previously showed that Pyk2 is important for hippocampal function, plasticity, and spine structure. However, its potential role in AD is unknown. To address this question we used human brain samples and 5XFAD mice, an amyloid mouse model of AD expressing mutated human amyloid precursor protein and presenilin1. In the hippocampus of 5XFAD mice and in human AD patients' cortex and hippocampus, Pyk2 total levels were normal. However, Pyk2 Tyr-402 phosphorylation levels, reflecting its autophosphorylation-dependent activity, were reduced in 5XFAD mice at 8 months of age but not 3 months. We crossed these mice with Pyk2-/- mice to generate 5XFAD animals devoid of Pyk2. At 8 months the phenotype of 5XFAD x Pyk2-/- double mutant mice was not different from that of 5XFAD. In contrast, overexpression of Pyk2 in the hippocampus of 5XFAD mice, using adeno-associated virus, rescued autophosphorylated Pyk2 levels and improved synaptic markers and performance in several behavioral tasks. Both Pyk2-/- and 5XFAD mice showed an increase of potentially neurotoxic Src cleavage product, which was rescued by Pyk2 overexpression. Manipulating Pyk2 levels had only minor effects on Aß plaques, which were slightly decreased in hippocampus CA3 region of double mutant mice and increased following overexpression. Our results show that Pyk2 is not essential for the pathogenic effects of human amyloidogenic mutations in the 5XFAD mouse model. However, the slight decrease in plaque number observed in these mice in the absence of Pyk2 and their increase following Pyk2 overexpression suggest a contribution of this kinase in plaque formation. Importantly, a decreased function of Pyk2 was observed in 5XFAD mice, indicated by its decreased autophosphorylation and associated Src alterations. Overcoming this deficit by Pyk2 overexpression improved the behavioral and molecular phenotype of 5XFAD mice. Thus, our results in a mouse model of AD suggest that Pyk2 impairment may play a role in the symptoms of the disease.


Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Modelos Animais de Doenças , Quinase 2 de Adesão Focal/biossíntese , Regulação Enzimológica da Expressão Gênica , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Animais , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Feminino , Quinase 2 de Adesão Focal/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Hipocampo/enzimologia , Hipocampo/patologia , Humanos , Locomoção/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Placa Amiloide/enzimologia , Placa Amiloide/genética , Placa Amiloide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA