Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 12(5): e1251, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39155548

RESUMO

In parallel to the legalization of cannabis for both medicinal and recreational purposes, cannabinoid use has steadily increased over the last decade in the United States. Cannabinoids, such as tetrahydrocannabinol and anandamide, bind to the central cannabinoid-1 (CB1) receptor to impact several physiological processes relevant for body weight regulation, including appetite and energy expenditure. The hypothalamus integrates peripheral signals related to energy balance, houses several nuclei that orchestrate eating, and expresses the CB1 receptor. Herein we review literature to date concerning cannabinergic action in the hypothalamus with a specific focus on eating behaviors. We highlight hypothalamic areas wherein researchers have focused their attention, including the lateral, arcuate, paraventricular, and ventromedial hypothalamic nuclei, and interactions with the hormone leptin. This review serves as a comprehensive analysis of what is known about cannabinoid signaling in the hypothalamus, highlights gaps in the literature, and suggests future directions.


Assuntos
Canabinoides , Comportamento Alimentar , Hipotálamo , Receptor CB1 de Canabinoide , Transdução de Sinais , Humanos , Animais , Hipotálamo/metabolismo , Comportamento Alimentar/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Leptina/metabolismo , Metabolismo Energético
2.
Physiol Behav ; 273: 114416, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000529

RESUMO

Food insecurity is defined as having limited or uncertain access to nutritious foods, and adolescent food insecurity is associated with obesity and disordered eating behaviors in humans. We developed a rodent model of adolescent food insecurity to determine whether adolescent food insecurity per se promotes increased susceptibility to diet-induced obesity and altered eating behaviors during adulthood. Female juvenile Wistar rats were singly housed and assigned to three experimental diets: food-secure with standard chow (CHOW), food-secure with a high-fat/sugar Western diet (WD), and food-insecure with WD (WD-FI). Food-secure rats (CHOW and WD) received meals at fixed feeding times (9:00, 13:00, and 16:00). WD-FI rats received meals at unpredictable intervals of the above-mentioned feeding times but had isocaloric amounts of food to WD. We investigated the impact of adolescent food insecurity on motivation for sucrose (Progressive Ratio), approach-avoidance behavior for palatable high-fat food (Approach-Avoidance task), and susceptibility to weight gain and hyperphagia when given an obesogenic choice diet. Secondary outcomes were the effects of food insecurity during development on anxiety-like behaviors (Open Field and Elevated Plus Maze) and learning and memory function (Novel Location Recognition task). Rodents with adolescent food insecurity showed a greater trend of weight gain and significantly increased fat mass and liver fat accumulation on an obesogenic diet in adulthood, despite no increases in motivation for sucrose or high-fat food. These data suggest that adolescent unpredictable food access increases susceptibility to diet-induced fat gain without impacting food motivation or food intake in female rodents. These findings are among a small group of recent studies modeling food insecurity in rodents and suggest that adolescent food insecurity in females may have long-term implications for metabolic physiology later in life.


Assuntos
Ingestão de Alimentos , Roedores , Humanos , Feminino , Ratos , Animais , Adolescente , Ingestão de Alimentos/fisiologia , Ratos Wistar , Obesidade/etiologia , Aumento de Peso , Comportamento Alimentar , Sacarose/farmacologia , Dieta Hiperlipídica/efeitos adversos , Insegurança Alimentar
3.
Tissue Eng Part A ; 28(17-18): 795-806, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35620911

RESUMO

Volumetric muscle loss (VML) injuries represent a majority of military service member casualties and are common in civilian populations following blunt and/or penetrating traumas. Characterized as a skeletal muscle injury with permanent functional impairments, there is currently no standard for rehabilitation, leading to lifelong disability. Toward developing rehabilitative strategies, previous research demonstrates that the remaining muscle after a VML injury lacks similar levels of plasticity or adaptability as healthy, uninjured skeletal muscle. This may be due, in part, to impaired innervation and vascularization of the remaining muscle, as well as disrupted molecular signaling cascades commonly associated with muscle adaptation. The primary objective of this study was to assess the ability of four pharmacological agents with a strong record of modulating muscle contractile and metabolic function to improve functional deficits in a murine model of VML injury. Male C57BL/6 mice underwent a 15% multimuscle VML injury of the posterior hindlimb and were randomized into drug treatment groups (formoterol [FOR], 5-aminoimidazole-4-carboxamide riboside [AICAR], pioglitazone [PIO], or sildenafil [SIL]) or untreated VML group. At the end of 60 days, the injury model was first validated by comparison to age-matched injury-naive mice. Untreated VML mice had 22% less gastrocnemius muscle mass, 36% less peak-isometric torque, and 27% less maximal mitochondrial oxygen consumption rate compared to uninjured mice (p < 0.01). Experimental drug groups were, then, compared to VML untreated, and there was minimal evidence of efficacy for AICAR, PIO, or SIL in improving contractile and metabolic functional outcomes. However, FOR-treated VML mice had 18% greater peak isometric torque (p < 0.01) and permeabilized muscle fibers had 36% greater State III mitochondrial oxygen consumption rate (p < 0.01) compared to VML untreated mice, suggesting an overall improvement in muscle condition. There was minimal evidence that these benefits came from greater mitochondrial biogenesis and/or mitochondrial complex protein content, but could be due to greater enzyme activity levels for complex I and complex II. These findings suggest that FOR treatment is candidate to pair with a rehabilitative approach to maximize functional improvements in VML-injured muscle. Impact statement Volumetric muscle loss (VML) injuries result in deficiencies in strength and mobility, which have a severe impact on patient quality of life. Despite breakthroughs in tissue engineering, there are currently no treatments available that can restore function to the affected limb. Our data show that treatment of VML injuries with clinically available and FDA-approved formoterol (FOR), a beta-agonist, significantly improves strength and metabolism of VML-injured muscle. FOR is therefore a promising candidate for combined therapeutic approaches (i.e., regenerative rehabilitation) such as pairing FOR with structured rehabilitation or cell-seeded biomaterials as it may provide greater functional improvements than either strategy alone.


Assuntos
Doenças Musculares , Regeneração , Animais , Fumarato de Formoterol , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/lesões , Doenças Musculares/tratamento farmacológico , Preparações Farmacêuticas , Qualidade de Vida , Regeneração/fisiologia
4.
Nutrients ; 13(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34959774

RESUMO

A Western diet (WD), high in sugars and saturated fats, impairs learning and memory function and contributes to weight gain. Mitochondria in the brain provide energy for neurocognitive function and may play a role in body weight regulation. We sought to determine whether a WD alters behavior and metabolic outcomes in male and female rodents through impacting hippocampal and hypothalamic mitochondrial bioenergetics. Results revealed a sexually dimorphic macronutrient preference, where males on the WD consumed a greater percentage of calories from fat/protein and females consumed a greater percentage of calories from a sugar-sweetened beverage. Both males and females on a WD gained body fat and showed impaired glucose tolerance when compared to same-sex controls. Males on a WD demonstrated impaired hippocampal functioning and an elevated tendency toward a high membrane potential in hippocampal mitochondria. Comprehensive bioenergetics analysis of WD effects in the hypothalamus revealed a tissue-specific adaption, where males on the WD oxidized more fat, and females oxidized more fat and carbohydrates at peak energy demand compared to same-sex controls. These results suggest that adult male rats show a susceptibility toward hippocampal dysfunction on a WD, and that hypothalamic mitochondrial bioenergetics are altered by WD in a sex-specific manner.


Assuntos
Cognição/fisiologia , Dieta Ocidental/efeitos adversos , Metabolismo Energético/fisiologia , Caracteres Sexuais , Tecido Adiposo/metabolismo , Animais , Feminino , Intolerância à Glucose/etiologia , Hipocampo/metabolismo , Hipotálamo/metabolismo , Masculino , Mitocôndrias/metabolismo , Ratos , Aumento de Peso
5.
Sci Rep ; 11(1): 3763, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580118

RESUMO

Social stress exacerbates anxious and depressive behaviors in humans. Similarly, anxiety- and depressive-like behaviors are triggered by social stress in a variety of non-human animals. Here, we tested whether oral administration of the putative anxiolytic probiotic strains Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces the striking increase in anxiety-like behavior and changes in gut microbiota observed following social defeat stress in Syrian hamsters. We administered the probiotic at two different doses for 21 days, and 16S rRNA gene amplicon sequencing revealed a shift in microbial structure following probiotic administration at both doses, independently of stress. Probiotic administration at either dose increased anti-inflammatory cytokines IL-4, IL-5, and IL-10 compared to placebo. Surprisingly, probiotic administration at the low dose, equivalent to the one used in humans, significantly increased social avoidance and decreased social interaction. This behavioral change was associated with a reduction in microbial richness in this group. Together, these results demonstrate that probiotic administration alters gut microbial composition and may promote an anti-inflammatory profile but that these changes may not promote reductions in behavioral responses to social stress.


Assuntos
Comportamento Animal/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/farmacologia , Animais , Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Ansiedade/microbiologia , Bifidobacterium longum , Microbioma Gastrointestinal/fisiologia , Lactobacillus helveticus , Mesocricetus/microbiologia , Mesocricetus/fisiologia , Comportamento Social , Derrota Social , Estresse Psicológico/metabolismo , Estresse Psicológico/microbiologia
6.
Peptides ; 137: 170476, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33370567

RESUMO

Given the increased prevalence of obesity and its associated comorbidities, understanding the mechanisms through which the brain regulates energy balance is of critical importance. The neuropeptide melanin-concentrating hormone (MCH) is produced in the lateral hypothalamic area and the adjacent incerto-hypothalamic area and promotes both food intake and energy conservation, overall contributing to body weight gain. Decades of research into this system has provided insight into the neural pathways and mechanisms (behavioral and neurobiological) through which MCH stimulates food intake. Recent technological advancements that allow for selective manipulation of MCH neuron activity have elucidated novel mechanisms of action for the hyperphagic effects of MCH, implicating neural "volume" transmission in the cerebrospinal fluid and sex-specific effects of MCH on food intake control as understudied areas for future investigation. Highlighted here are historical and recent findings that illuminate the neurobiological mechanisms through which MCH promotes food intake, including the identification of various specific neural signaling pathways and interactions with other peptide systems. We conclude with a framework that the hyperphagic effects of MCH signaling are predominantly mediated through enhancement of an "appetition" process in which early postoral prandial signals promote further caloric consumption.


Assuntos
Apetite/genética , Ingestão de Alimentos/genética , Hormônios Hipotalâmicos/genética , Melaninas/genética , Neuropeptídeos/genética , Hormônios Hipofisários/genética , Apetite/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo Energético/genética , Feminino , Humanos , Hipotálamo , Masculino , Neurônios/metabolismo , Neurônios/patologia , Neuropeptídeos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA