Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 140(20): 204711, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24880315

RESUMO

The concept of liquid organic hydrogen carriers (LOHC) holds the potential for large scale chemical storage of hydrogen at ambient conditions. Herein, we compare the dehydrogenation and decomposition of three alkylated carbazole-based LOHCs, dodecahydro-N-ethylcarbazole (H12-NEC), dodecahydro-N-propylcarbazole (H12-NPC), and dodecahydro-N-butylcarbazole (H12-NBC), on Pt(111) and on Al2O3-supported Pt nanoparticles. We follow the thermal evolution of these systems quantitatively by in situ high-resolution X-ray photoelectron spectroscopy. We show that on Pt(111) the relevant reaction steps are not affected by the different alkyl substituents: for all LOHCs, stepwise dehydrogenation to NEC, NPC, and NBC is followed by cleavage of the C-N bond of the alkyl chain starting at 380-390 K. On Pt/Al2O3, we discern dealkylation on defect sites already at 350 K, and on ordered, (111)-like facets at 390 K. The dealkylation process at the defects is most pronounced for NEC and least pronounced for NBC.

2.
ACS Catal ; 4(2): 657-665, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24527267

RESUMO

Liquid organic hydrogen carriers (LOHC) are compounds that enable chemical energy storage through reversible hydrogenation. They are considered a promising technology to decouple energy production and consumption by combining high-energy densities with easy handling. A prominent LOHC is N-ethylcarbazole (NEC), which is reversibly hydrogenated to dodecahydro-N-ethylcarbazole (H12-NEC). We studied the reaction of H12-NEC on Pt(111) under ultrahigh vacuum (UHV) conditions by applying infrared reflection-absorption spectroscopy, synchrotron radiation-based high resolution X-ray photoelectron spectroscopy, and temperature-programmed molecular beam methods. We show that molecular adsorption of H12-NEC on Pt(111) occurs at temperatures between 173 and 223 K, followed by initial C-H bond activation in direct proximity to the N atom. As the first stable dehydrogenation product, we identify octahydro-N-ethylcarbazole (H8-NEC). Dehydrogenation to H8-NEC occurs slowly between 223 and 273 K and much faster above 273 K. Stepwise dehydrogenation to NEC proceeds while heating to 380 K. An undesired side reaction, C-N bond scission, was observed above 390 K. H8-NEC and H8-carbazole are the dominant products desorbing from the surface. Desorption occurs at higher temperatures than H8-NEC formation. We show that desorption and dehydrogenation activity are directly linked to the number of adsorption sites being blocked by reaction intermediates.

3.
J Phys Chem Lett ; 5(8): 1498-504, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-26269999

RESUMO

Hydrogen can be stored conveniently using so-called liquid organic hydrogen carriers (LOHCs), for example, N-ethylcarbazole (NEC), which can be reversibly hydrogenated to dodecahydro-N-ethylcarbazole (H12-NEC). In this study, we focus on the dealkylation of H12-NEC, an undesired side reaction, which competes with dehydrogenation. The structural sensivity of dealkylation was studied by high-resolution X-ray photoelectron spectroscopy (HR-XPS) on Al2O3-supported Pt model catalysts and Pt(111) single crystals. We show that the morphology of the Pt deposit strongly influences LOHC degradation via C-N bond breakage. On smaller, defect-rich Pt particles, the onset of dealkylation is shifted by 90 K to lower temperatures as compared to large, well-shaped particles and well-ordered Pt(111). We attribute these effects to a reduced activation barrier for C-N bond breakage at low-coordinated Pt sites, which are abundant on small Pt aggregates but are rare on large particles and single crystal surfaces.

4.
ChemSusChem ; 6(6): 974-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23674265

RESUMO

Sloshing hydrogen: Liquid organic hydrogen carriers are high-boiling organic molecules, which can be reversibly hydrogenated and dehydrogenated in catalytic processes and are, therefore, a promising chemical hydrogen storage material. One of the promising candidates is the pair N-ethylcarbazole/perhydro-N-ethylcarbazole (NEC/H12-NEC). The dehydrogenation and possible side reactions on a Pt(111) surface are evaluated in unprecedented detail.


Assuntos
Carbazóis/química , Platina/química , Catálise , Hidrogenação , Propriedades de Superfície
5.
J Chem Phys ; 136(9): 094702, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22401463

RESUMO

We studied the reaction kinetics of sulfur oxidation on the Pd(100) surface by in situ high resolution x-ray photoelectron spectroscopy and ab initio density functional calculations. Isothermal oxidation experiments were performed between 400 and 500 K for small amounts (~0.02 ML) of preadsorbed sulfur, with oxygen in large excess. The main stable reaction intermediate found on the surface is SO(4), with SO(2) and SO(3) being only present in minor amounts. Density-functional calculations depict a reaction energy profile, which explains the sequential formation of SO(2), SO(3), and eventually SO(4), also highlighting that the in-plane formation of SO from S and O adatoms is the rate limiting step. From the experiments we determined the activation energy of the rate limiting step to be 85 ± 6 kJ mol(-1) by Arrhenius analysis, matching the calculated endothermicity of the SO formation.

6.
Phys Chem Chem Phys ; 13(36): 16227-35, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21826326

RESUMO

We studied the adsorption and reactivity of SO(2) on clean and oxygen precovered Pd(100) with high resolution X-ray photoelectron spectroscopy and density functional calculations. Upon adsorption at 120 K two different SO(2) species were detected, which were identified as upright-standing and flat-lying molecules by comparing the calculated core level shifts. In agreement with the relative stabilities determined by the calculations the intensities of the photoelectron spectra indicate that the majority species are upright-standing SO(2). Upon heating the quantitative analysis of the data indicates desorption of SO(3) and formation of atomic sulfur. On the oxygen precovered surface small amounts of SO(3) are formed already upon SO(2) adsorption at low temperatures. Upon heating stepwise oxidation of SO(2) to SO(3) and, eventually, to SO(4) is found. Two different SO(4) species were detected, which are assigned to SO(4) bound in the proximity of or remote from oxygen adatoms, according to core level shift estimates.

7.
Chemistry ; 16(22): 6530-9, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20419714

RESUMO

Complete dehydrogenation of methane is studied on model Pt catalysts by means of state-of-the-art DFT methods and by a combination of supersonic molecular beams with high-resolution photoelectron spectroscopy. The DFT results predict that intermediate species like CH(3) and CH(2) are specially stabilized at sites located at particles edges and corners by an amount of 50-80 kJ mol(-1). This stabilization is caused by an enhanced activity of low-coordinated sites accompanied by their special flexibility to accommodate adsorbates. The kinetics of the complete dehydrogenation of methane is substantially modified according to the reaction energy profiles when switching from Pt(111) extended surfaces to Pt nanoparticles. The CH(3) and CH(2) formation steps are endothermic on Pt(111) but markedly exothermic on Pt(79). An important decrease of the reaction barriers is observed in the latter case with values of approximately 60 kJ mol(-1) for first C-H bond scission and 40 kJ mol(-1) for methyl decomposition. DFT predictions are experimentally confirmed by methane decomposition on Pt nanoparticles supported on an ordered CeO(2) film on Cu(111). It is shown that CH(3) generated on the Pt nanoparticles undergoes spontaneous dehydrogenation at 100 K. This is in sharp contrast to previous results on Pt single-crystal surfaces in which CH(3) was stable up to much higher temperatures. This result underlines the critical role of particle edge sites in methane activation and dehydrogenation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA