Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neurosci Res ; 101(9): 1484-1503, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37313950

RESUMO

A link between maternal anxiety during pregnancy and adverse socio-emotional outcomes in childhood has been consistently sustained on the very early neurodevelopmental alteration of structural pathways between fetal limbic and cortical brain regions. In this study, we provide follow-up evidence for a feed-forward model linking (i) maternal anxiety, (ii) fetal functional neurodevelopment, (iii) neonatal functional network organization with (iv) socio-emotional neurobehavioral development in early childhood. Namely, we investigate a sample of 16 mother-fetus dyads and show how a maternal state-trait anxiety profile with pregnancy-specific worries can significantly influence functional synchronization patterns between regions of the fetal limbic system (i.e., hippocampus and amygdala) and the neocortex, as assessed through resting-state functional magnetic resonance imaging. Generalization of the findings was supported by leave-one-out cross-validation. We further show how this maternal-fetal cross-talk propagates to functional network topology in the neonate, specifically targeting connector hubs, and further maps onto socio-emotional profiles, assessed through Bayley-III socio-emotional scale in early childhood (i.e., in the 12-24 months range). Based on this evidence, we put forward the hypothesis of a "Maternal-Fetal-Neonatal Anxiety Backbone", through which neurobiological changes driven by maternal anxiety could trigger a divergence in the establishment of a cognitive-emotional development blueprint, in terms of the nascent functional homeostasis between bottom-up limbic and top-down higher-order neuronal circuitry.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Recém-Nascido , Feminino , Gravidez , Humanos , Pré-Escolar , Encéfalo/patologia , Emoções , Feto , Ansiedade
2.
Lancet ; 399(10322): 372-383, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-35065785

RESUMO

BACKGROUND: Effective treatment for metachromatic leukodystrophy (MLD) remains a substantial unmet medical need. In this study we investigated the safety and efficacy of atidarsagene autotemcel (arsa-cel) in patients with MLD. METHODS: This study is an integrated analysis of results from a prospective, non-randomised, phase 1/2 clinical study and expanded-access frameworks. 29 paediatric patients with pre-symptomatic or early-symptomatic early-onset MLD with biochemical and molecular confirmation of diagnosis were treated with arsa-cel, a gene therapy containing an autologous haematopoietic stem and progenitor cell (HSPC) population transduced ex vivo with a lentiviral vector encoding human arylsulfatase A (ARSA) cDNA, and compared with an untreated natural history (NHx) cohort of 31 patients with early-onset MLD, matched by age and disease subtype. Patients were treated and followed up at Ospedale San Raffaele, Milan, Italy. The coprimary efficacy endpoints were an improvement of more than 10% in total gross motor function measure score at 2 years after treatment in treated patients compared with controls, and change from baseline of total peripheral blood mononuclear cell (PBMC) ARSA activity at 2 years after treatment compared with values before treatment. This phase 1/2 study is registered with ClinicalTrials.gov, NCT01560182. FINDINGS: At the time of analyses, 26 patients treated with arsa-cel were alive with median follow-up of 3·16 years (range 0·64-7·51). Two patients died due to disease progression and one due to a sudden event deemed unlikely to be related to treatment. After busulfan conditioning, all arsa-cel treated patients showed sustained multilineage engraftment of genetically modified HSPCs. ARSA activity in PBMCs was significantly increased above baseline 2 years after treatment by a mean 18·7-fold (95% CI 8·3-42·2; p<0·0001) in patients with the late-infantile variant and 5·7-fold (2·6-12·4; p<0·0001) in patients with the early-juvenile variant. Mean differences in total scores for gross motor function measure between treated patients and age-matched and disease subtype-matched NHx patients 2 years after treatment were significant for both patients with late-infantile MLD (66% [95% CI 48·9-82·3]) and early-juvenile MLD (42% [12·3-71·8]). Most treated patients progressively acquired motor skills within the predicted range of healthy children or had stabilised motor performance (maintaining the ability to walk). Further, most displayed normal cognitive development and prevention or delay of central and peripheral demyelination and brain atrophy throughout follow-up; treatment benefits were particularly apparent in patients treated before symptom onset. The infusion was well tolerated and there was no evidence of abnormal clonal proliferation or replication-competent lentivirus. All patients had at least one grade 3 or higher adverse event; most were related to conditioning or to background disease. The only adverse event related to arsa-cel was the transient development of anti-ARSA antibodies in four patients, which did not affect clinical outcomes. INTERPRETATION: Treatment with arsa-cel resulted in sustained, clinically relevant benefits in children with early-onset MLD by preserving cognitive function and motor development in most patients, and slowing demyelination and brain atrophy. FUNDING: Orchard Therapeutics, Fondazione Telethon, and GlaxoSmithKline.


Assuntos
Cerebrosídeo Sulfatase/genética , Transplante de Células-Tronco Hematopoéticas , Lentivirus/genética , Leucodistrofia Metacromática , Idade de Início , Criança , Pré-Escolar , Feminino , Terapia Genética , Vetores Genéticos , Humanos , Itália , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Masculino , Estudos Prospectivos , Resultado do Tratamento
3.
J Inherit Metab Dis ; 44(5): 1151-1164, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33855715

RESUMO

In this study, we characterize the natural course of metachromatic leukodystrophy (MLD), explore intra/inter group differences, and identify biomarkers to monitor disease progression. This is a longitudinal observational study. Genotype and characteristics at disease onset were recorded. Time-to-event analyses were performed to assess time to major disease-related milestones in different subgroups. Longitudinal trajectories of nerve conduction velocities (NCV), brain MRI score, and brainstem auditory evoked responses (BAERs) were described. We recruited 22 late-infantile, 14 early-juvenile, 5 late-juvenile, and 4 adult MLD patients. Thirty-four were prospectively evaluated (median FU time 43 months). In late-infantile patients, the attainment of independent walking was associated with a later age at dysphagia. In early-juvenile, the presence of isolated cognitive impairment at onset was not a favorable prognostic factor. Late-infantile and early-juvenile subjects showed similar rapid loss of ambulation and onset of seizures, but late-infantile displayed earlier loss of trunk control, dysphagia, and death. We found significant differences in all major disease-related milestones (except death) between early-juvenile and late-juvenile patients. Late-juvenile and adult patients both presented with a predominant cognitive impairment, mild/no peripheral neuropathy, lower brain MRI score at plateau compared to LI/EJ, and later cerebellar involvement. NCV and BAER were consistently severely abnormal in late-infantile but not in older subjects, in whom both NCV and BAER were variably affected, with no deterioration over time in some cases. This study clarifies intra/inter group differences between MLD subtypes and provides additional indications regarding reliable clinical and instrumental tools to monitor disease progression and to serve as areference to evaluate the efficacy of future therapeutic interventions inthe different MLD variants.


Assuntos
Encéfalo/patologia , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/patologia , Adolescente , Criança , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Lactente , Itália , Estudos Longitudinais , Doenças por Armazenamento dos Lisossomos/diagnóstico , Doenças por Armazenamento dos Lisossomos/patologia , Imageamento por Ressonância Magnética , Masculino
4.
Pharmacol Res ; 152: 104583, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31816434

RESUMO

Biologic disease-modifying anti-rheumatic drugs (bDMARDs) are used in pregnant patients with rheumatic diseases. Long-term follow-up data about newborns exposed to bDMARDs during pregnancy are however scarce. Here we summarize the published evidence and available recommendations for use of bDMARDs during pregnancy. We analyse clinical features at birth and at follow-up of 84 children, including: 16 consecutive children born to mothers with autoimmune diseases exposed to bDMARDs in utero; 32 children born to mothers with autoimmune diseases who did not receive bDMARDs; 36 children born to healthy mothers. In our monocentric cohort, children born to mothers with autoimmune diseases had lower gestational age at birth compared to those born to healthy mothers, independently of exposure to bDMARDs. At multivariate analysis, prematurity was an independent predictor of the need for antibiotic treatment, but not for hospitalisation or neonatal intensive care unit (ICU) stay during the neonatal period. Exposure to bDMARDs during pregnancy does not seem to interfere with post-natal development up to infancy. Prospective studies are needed in larger cohorts of pregnant patients to confirm that bDMARDs do not have a negative impact on psychomotor achievements in newborns.


Assuntos
Antirreumáticos/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Fatores Biológicos/uso terapêutico , Feminino , Humanos , Recém-Nascido , Masculino , Mães , Gravidez , Resultado da Gravidez
5.
Bone Marrow Transplant ; 54(12): 1995-2003, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31150018

RESUMO

Collection of an adequate amount of autologous haematopoietic stem progenitor cells (HSPC) is required for ex vivo manipulation and successful engraftment for certain inherited disorders. Fifty-seven paediatric patients (age 0.5-11.4 years) underwent a bone marrow harvest for the purpose of HSPC gene therapy (GT), including adenosine deaminase-severe combined immunodeficiency (ADA-SCID), Wiskott-Aldrich syndrome (WAS) and metachromatic leukodystrophy (MLD) patients. Total nucleated cells and the percentage and absolute counts of CD34+ cells were calculated at defined steps of the procedure (harvest, CD34+ cell purification, transduction with the gene transfer vector and infusion of the medicinal product). A minimum CD34+ cell dose for infusion was 2 × 106/kg, with an optimal target at 5-10 × 106/kg. Median volume of bone marrow harvested was 34.2 ml/kg (range 14.2-56.6). The number of CD34+ cells collected correlated inversely with weight and age in all patients and particularly in the MLD children group. All patients reached the minimum target dose for infusion: median dose of CD34+ cells/kg infused was 10.3 × 106/kg (3.7-25.9), with no difference among the three groups. Bone marrow harvest of volumes > 30 ml/kg in infants and children with ADA-SCID, WAS and MLD is well tolerated and allows obtaining an adequate dose of a medicinal product for HSPC-GT.


Assuntos
Medula Óssea/metabolismo , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Condicionamento Pré-Transplante/métodos , Feminino , Humanos , Masculino
6.
Front Pediatr ; 7: 116, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019904

RESUMO

We report a case of a baby, who, after pregnancy complicated by maternal Addison's disease and Hashimoto's thyroiditis and natural delivery, unexpectedly presented a cardiorespiratory collapse and died 1 hour after birth without responding to prolonged neonatal resuscitation maneuvers. The cause of death was reliably established by carrying out a forensic postmortem examination. More specifically, the histological examination of the lungs showed the presence of abundant endoalveolar and endobronchial cornea scales caused by absorption of amniotic fluid. The neuropathological examination of the brainstem highlighted severe hypodevelopment of the retrotrapezoid/parafacial respiratory group, which is a complex of neurons located in the caudal pons that is involved in respiratory rhythm coordination, especially expiration, in conditions of enhanced respiratory drive, as well as in chemoreception. This neuropathological finding shed new light on the mechanisms underlying the massive amniotic fluid aspiration which led to this early death.

7.
Lancet ; 388(10043): 476-87, 2016 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-27289174

RESUMO

BACKGROUND: Metachromatic leukodystrophy (a deficiency of arylsulfatase A [ARSA]) is a fatal demyelinating lysosomal disease with no approved treatment. We aimed to assess the long-term outcomes in a cohort of patients with early-onset metachromatic leukodystrophy who underwent haemopoietic stem-cell gene therapy (HSC-GT). METHODS: This is an ad-hoc analysis of data from an ongoing, non-randomised, open-label, single-arm phase 1/2 trial, in which we enrolled patients with a molecular and biochemical diagnosis of metachromatic leukodystrophy (presymptomatic late-infantile or early-juvenile disease or early-symptomatic early-juvenile disease) at the Paediatric Clinical Research Unit, Ospedale San Raffaele, in Milan. Trial participants received HSC-GT, which consisted of the infusion of autologous HSCs transduced with a lentiviral vector encoding ARSA cDNA, after exposure-targeted busulfan conditioning. The primary endpoints of the trial are safety (toxicity, absence of engraftment failure or delayed haematological reconstitution, and safety of lentiviral vector-tranduced cell infusion) and efficacy (improvement in Gross Motor Function Measure [GMFM] score relative to untreated historical controls, and ARSA activity, 24 months post-treatment) of HSC-GT. For this ad-hoc analysis, we assessed safety and efficacy outcomes in all patients who had received treatment and been followed up for at least 18 months post-treatment on June 1, 2015. This trial is registered with ClinicalTrials.gov, number NCT01560182. FINDINGS: Between April, 2010, and February, 2013, we had enrolled nine children with a diagnosis of early-onset disease (six had late-infantile disease, two had early-juvenile disease, and one had early-onset disease that could not be definitively classified). At the time of analysis all children had survived, with a median follow-up of 36 months (range 18-54). The most commonly reported adverse events were cytopenia (reported in all patients) and mucositis of different grades of severity (in five of nine patients [grade 3 in four of five patients]). No serious adverse events related to the medicinal product were reported. Stable, sustained engraftment of gene-corrected HSCs was observed (a median of 60·4% [range 14·0-95·6] lentiviral vector-positive colony-forming cells across follow-up) and the engraftment level was stable during follow-up; engraftment determinants included the duration of absolute neutropenia and the vector copy number of the medicinal product. A progressive reconstitution of ARSA activity in circulating haemopoietic cells and in the cerebrospinal fluid was documented in all patients in association with a reduction of the storage material in peripheral nerve samples in six of seven patients. Eight patients, seven of whom received treatment when presymptomatic, had prevention of disease onset or halted disease progression as per clinical and instrumental assessment, compared with historical untreated control patients with early-onset disease. GMFM scores for six patients up to the last follow-up showed that gross motor performance was similar to that of normally developing children. The extent of benefit appeared to be influenced by the interval between HSC-GT and the expected time of disease onset. Treatment resulted in protection from CNS demyelination in eight patients and, in at least three patients, amelioration of peripheral nervous system abnormalities, with signs of remyelination at both sites. INTERPRETATION: Our ad-hoc findings provide preliminary evidence of safety and therapeutic benefit of HSC-GT in patients with early-onset metachromatic leukodystrophy who received treatment in the presymptomatic or very early-symptomatic stage. The results of this trial will be reported when all 20 patients have achieved 3 years of follow-up. FUNDING: Italian Telethon Foundation and GlaxoSmithKline.


Assuntos
Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Leucodistrofia Metacromática/terapia , Adolescente , Idade de Início , Criança , Pré-Escolar , Feminino , Seguimentos , Terapia Genética/métodos , Humanos , Lactente , Itália , Lentivirus , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/cirurgia , Masculino , Resultado do Tratamento
8.
Hum Mutat ; 37(1): 16-27, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26462614

RESUMO

Metachromatic leukodystrophy is a neurodegenerative disorder characterized by progressive demyelination. The disease is caused by variants in the ARSA gene, which codes for the lysosomal enzyme arylsulfatase A, or, more rarely, in the PSAP gene, which codes for the activator protein saposin B. In this Mutation Update, an extensive review of all the ARSA- and PSAP-causative variants published in the literature to date, accounting for a total of 200 ARSA and 10 PSAP allele types, is presented. The detailed ARSA and PSAP variant lists are freely available on the Leiden Online Variation Database (LOVD) platform at http://www.LOVD.nl/ARSA and http://www.LOVD.nl/PSAP, respectively.


Assuntos
Cerebrosídeo Sulfatase/genética , Estudos de Associação Genética , Leucodistrofia Metacromática/genética , Mutação , Saposinas/genética , Alelos , Bases de Dados Genéticas , Genótipo , Humanos , Leucodistrofia Metacromática/diagnóstico , Fenótipo
9.
Gene ; 537(2): 348-51, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24334127

RESUMO

Metachromatic Leukodystrophy is a lysosomal storage disorder caused by Arylsulfatase A deficiency. Diagnosis is usually performed by measurement of enzymatic activity and/or characterization of the gene mutations. Here we describe a family case in which the determination of enzyme activity alone did not allow diagnosis of the pre-symptomatic sibling of the index case. Only combination of gene sequencing with thorough biochemical analysis allowed the correct diagnosis of the sibling, who was promptly directed to treatment.


Assuntos
Cerebrosídeo Sulfatase/genética , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/genética , Alelos , Cerebrosídeo Sulfatase/sangue , Feminino , Heterozigoto , Humanos , Lactente , Masculino
10.
Ann Neurol ; 75(1): 127-37, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24242821

RESUMO

OBJECTIVE: To facilitate development of novel disease-modifying therapies for lysosomal storage disorder (LSDs) characterized by nervous system involvement such as metachromatic leukodystrophy (MLD), molecular markers for monitoring disease progression and therapeutic response are needed. To this end, we sought to identify blood transcripts associated with the progression of MLD. METHODS: Genome-wide expression analysis was performed in primary T lymphocytes of 24 patients with MLD compared to 24 age- and sex-matched healthy controls. Genes associated with MLD were identified, confirmed on a quantitative polymerase chain reaction platform, and replicated in an independent patient cohort. mRNA and protein expression of the prioritized gene family of metallothioneins was evaluated in postmortem patient brains and in mouse models representing 6 other LSDs. Metallothionein expression during disease progression and in response to specific treatment was evaluated in 1 of the tested LSD mouse models. Finally, a set of in vitro studies was planned to dissect the biological functions exerted by this class of molecules. RESULTS: Metallothionein genes were significantly overexpressed in T lymphocytes and brain of patients with MLD and generally marked nervous tissue damage in the LSDs here evaluated. Overexpression of metallothioneins correlated with measures of disease progression in mice and patients, whereas their levels decreased in mice upon therapeutic treatment. In vitro studies indicated that metallothionein expression is regulated in response to oxidative stress and inflammation, which are biochemical hallmarks of lysosomal storage diseases. INTERPRETATION: Metallothioneins are potential markers of neurologic disease processes and treatment response in LSDs.


Assuntos
Leucócitos Mononucleares/metabolismo , Leucodistrofia Metacromática/metabolismo , Doenças por Armazenamento dos Lisossomos/metabolismo , Metalotioneína/química , Simulação de Dinâmica Molecular , Animais , Biomarcadores/metabolismo , Técnicas de Cocultura , Modelos Animais de Doenças , Humanos , Leucodistrofia Metacromática/diagnóstico , Doenças por Armazenamento dos Lisossomos/diagnóstico , Doenças por Armazenamento dos Lisossomos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células
11.
Science ; 341(6148): 1233158, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23845948

RESUMO

Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disease caused by arylsulfatase A (ARSA) deficiency. Patients with MLD exhibit progressive motor and cognitive impairment and die within a few years of symptom onset. We used a lentiviral vector to transfer a functional ARSA gene into hematopoietic stem cells (HSCs) from three presymptomatic patients who showed genetic, biochemical, and neurophysiological evidence of late infantile MLD. After reinfusion of the gene-corrected HSCs, the patients showed extensive and stable ARSA gene replacement, which led to high enzyme expression throughout hematopoietic lineages and in cerebrospinal fluid. Analyses of vector integrations revealed no evidence of aberrant clonal behavior. The disease did not manifest or progress in the three patients 7 to 21 months beyond the predicted age of symptom onset. These findings indicate that extensive genetic engineering of human hematopoiesis can be achieved with lentiviral vectors and that this approach may offer therapeutic benefit for MLD patients.


Assuntos
Cerebrosídeo Sulfatase/genética , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Leucodistrofia Metacromática/terapia , Encéfalo/patologia , Dano ao DNA , Seguimentos , Engenharia Genética , Vetores Genéticos/toxicidade , Humanos , Lentivirus , Leucodistrofia Metacromática/patologia , Imageamento por Ressonância Magnética , Transdução Genética , Resultado do Tratamento , Integração Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA