Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Sci Rep ; 14(1): 15732, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977826

RESUMO

YAP plays a vital role in controlling growth and differentiation in various cell lineages. Although the expression of YAP in mice testicular and spermatogenic cells suggests its role in mammalian spermatogenesis, the role of YAP in the development of human male germ cells has not yet been determined. Using an in vitro model and a gene editing approach, we generated human spermatogonia stem cell-like cells (hSSLCs) from human embryonic stem cells (hESCs) and investigated the role of YAP in human spermatogenesis. The results showed that reducing YAP expression during the early stage of spermatogenic differentiation increased the number of PLZF+ hSSLCs and haploid spermatid-like cells. We also demonstrated that the up-regulation of YAP is essential for maintaining spermatogenic cell survival during the later stages of spermatogenic differentiation. The expression of YAP that deviates from this pattern results in a lower number of hSSLCs and an increased level of spermatogenic cell death. Taken together, our result demonstrates that the dynamic expression pattern of YAP is essential for human spermatogenesis. Modulating the level of YAP during human spermatogenesis could improve the production yield of male germ cells derived from hESCs, which could provide the optimization method for in vitro gametogenesis and gain insight into the application in the treatment of male infertility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Células-Tronco Embrionárias Humanas , Espermatogênese , Fatores de Transcrição , Proteínas de Sinalização YAP , Masculino , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Espermatogônias/metabolismo , Espermatogônias/citologia , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética
2.
Stem Cell Res ; 78: 103466, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852425

RESUMO

The Rh-negative type O blood group (O Rh-) is considered a universal donor for emergency blood transfusions. Due to the constant shortage of this rare blood group, the production of blood cells from iPSCs derived from the O Rh- donor could potentially serve as a limitless blood source for transfusions. In this report, we establish a MUSIi017-A iPSC line from peripheral blood mononuclear cells of a healthy donor with the O Rh- blood group. The established iPSC line exhibited a normal karyotype, showed identical STR compared to donor peripheral blood mononuclear cells, and could differentiate to all three germ layers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem Celular , Sistema ABO de Grupos Sanguíneos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Diferenciação Celular , Doadores de Sangue
3.
Front Cell Dev Biol ; 12: 1361943, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38752196

RESUMO

Hematopoiesis continues throughout life to produce all types of blood cells from hematopoietic stem cells (HSCs). Metabolic state is a known regulator of HSC self-renewal and differentiation, but whether and how metabolic sensor O-GlcNAcylation, which can be modulated via an inhibition of its cycling enzymes O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT), contributes to hematopoiesis remains largely unknown. Herein, isogenic, single-cell clones of OGA-depleted (OGAi) and OGT-depleted (OGTi) human induced pluripotent stem cells (hiPSCs) were successfully generated from the master hiPSC line MUSIi012-A, which were reprogrammed from CD34+ hematopoietic stem/progenitor cells (HSPCs) containing epigenetic memory. The established OGAi and OGTi hiPSCs exhibiting an increase or decrease in cellular O-GlcNAcylation concomitant with their loss of OGA and OGT, respectively, appeared normal in phenotype and karyotype, and retained pluripotency, although they may favor differentiation toward certain germ lineages. Upon hematopoietic differentiation through mesoderm induction and endothelial-to-hematopoietic transition, we found that OGA inhibition accelerates hiPSC commitment toward HSPCs and that disruption of O-GlcNAc homeostasis affects their commitment toward erythroid lineage. The differentiated HSPCs from all groups were capable of giving rise to all hematopoietic progenitors, thus confirming their functional characteristics. Altogether, the established single-cell clones of OGTi and OGAi hiPSCs represent a valuable platform for further dissecting the roles of O-GlcNAcylation in blood cell development at various stages and lineages of blood cells. The incomplete knockout of OGA and OGT in these hiPSCs makes them susceptible to additional manipulation, i.e., by small molecules, allowing the molecular dynamics studies of O-GlcNAcylation.

4.
Sci Rep ; 14(1): 3993, 2024 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-38368446

RESUMO

Chronic myelogenous leukemia (CML) is a clonal hematologic malignancy of the myeloid lineage caused by the oncogenic BCR/ABL fusion protein that promotes CML cell proliferation and protects them against drug-induced apoptosis. In this study, we determine LATS1 and LATS2 expression in CML cells derived from patients who are resistant to imatinib (IM) treatment. Significant upregulation of LATS1 and LATS2 was found in these CML patients compared to healthy donors. To further explore whether the expression of LATS1/2 contributes to the IM-resistant phenotype, IM-resistant CML cell lines generated by culturing CML-derived erythroblastic K562 cells in increasing concentrations of IM were used as in vitro models. Up-regulation of LATS1 and LATS2 was observed in IM-resistant K562 cells. Reduction of LATS using either Lats-IN-1 (TRULI), a specific LATS inhibitor, or shRNA targeting LATS1/2 significantly reduced clonogenicity, increased apoptosis and induced differentiation of K562 cells to late-stage erythroid cells. Furthermore, depletion of LATS1 and LATS2 also increased the sensitivity of K562 cells to IM. Taken together, our results suggest that LATS could be one of the key factors contributing to the rapid proliferation, reduced apoptosis, and IM resistance of CML cells. Targeting LATS could be a promising treatment to enhance the therapeutic effect of a conventional BCR/ABL tyrosine kinase inhibitor such as IM.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas de Fusão bcr-abl/genética , Proteínas Serina-Treonina Quinases , Células K562 , Apoptose , Proteínas Supressoras de Tumor
5.
Stem Cell Res Ther ; 14(1): 279, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775798

RESUMO

BACKGROUND: In vitro production of hematopoietic stem/progenitor cells (HSPCs) from human-induced pluripotent stem cells (hiPSCs) provides opportunities for fundamental research, disease modeling, and large-scale production of HLA-matched HSPCs for therapeutic applications. However, a comprehensive understanding of the signaling mechanisms that regulate human hematopoiesis is needed to develop a more effective procedure for deriving HSPCs from hiPSCs. METHODS: In this study, we investigate the role of YAP during the hematopoietic differentiation of hiPSCs to HSPCs and erythrocytes using the isogenic YAP-overexpressing (YAP-S5A) and YAP-depleting (YAP-KD) hiPSCs to eliminate the effects of a genetic background variation. RESULTS: Although YAP is dispensable for maintaining the self-renewal and pluripotency of these hiPSCs, it affects the early cell-fate determination and hematopoietic differentiation of hiPSCs. Depleting YAP enhances the derivation efficiency of HSPCs from hiPSCs by inducing the mesodermal lineage commitment, promoting hematopoietic differentiation, and preventing the differentiation toward endothelial lineage. On the contrary, the overexpression of YAP reduced HSPCs yield by inducing the endodermal lineage commitment, suppressing hematopoietic differentiation, and promoting the differentiation toward endothelial lineage. CONCLUSIONS: Expression of YAP is crucial for the differentiation of hiPSC-derived HSPCs toward mature erythrocytes. We believe that by manipulating YAP activity using small molecules, the efficiency of the large-scale in vitro production system for generating hematopoietic stem/progenitor cells for future therapeutic use could be improved.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem da Célula/genética , Diferenciação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Hematopoese
6.
Gels ; 9(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36975637

RESUMO

Levan is a biopolymer composed of fructose chains covalently linked by ß-2,6 glycosidic linkages. This polymer self-assembles into a nanoparticle of uniform size, making it useful for a wide range of applications. Also, levan exhibits various biological activities such as antioxidants, anti-inflammatory, and anti-tumor, that make this polymer very attractive for biomedical application. In this study, levan synthesized from Erwinia tasmaniensis was chemically modified by glycidyl trimethylammonium chloride (GTMAC) to produce cationized nanolevan (QA-levan). The structure of the obtained GTMAC-modified levan was determined by FT-IR, 1H-NMR and elemental (CHN) analyzer. The size of the nanoparticle was calculated using the dynamic light scattering method (DLS). The formation of DNA/QA-levan polyplex was then investigated by gel electrophoresis. The modified levan was able to increase the solubility of quercetin and curcumin by 11-folds and 205-folds, respectively, compared to free compounds. Cytotoxicity of levan and QA-levan was also investigated in HEK293 cells. This finding suggests that GTMAC-modified levan should have a potential application for drug and nucleic acid delivery.

7.
Stem Cell Res ; 67: 103035, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36753833

RESUMO

Runt-Related Transcription Factor 1c (RUNX1c) plays an important role in regulating the development of hematopoietic stem cells (HSC). Using CRISPR/Cas9 gene editing technology, we established a RUNX1c-eGFP reporter cell line from the MUSIi012-A cell line. The MUSIi012-A-4 cell line has normal stem cell morphology and karyotype, expresses pluripotency markers, and can be differentiated into all three germ layers in vitro and in vivo. This cell line serves as a valuable model to observe the expression of RUNX1c via eGFP tracking during human hematopoietic development.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Edição de Genes , Diferenciação Celular
8.
Stem Cell Res ; 66: 103014, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603353

RESUMO

MUSIi016-A, a human induced pluripotent stem cell (iPSC), generated from peripheral blood mononuclear cells of a healthy blood group O Rh positive donor was reprogrammed using Sendai viral vectors containing Yamanaka's factors. MUSIi016-A iPSC showed pluripotent stem cell characteristics, highly expressed pluripotent markers, and a capacity to differentiate into all three embryonic cell lineages. This iPSC can be used as a model for the generation of blood cells in vitro.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Leucócitos Mononucleares , Linhagem da Célula , Diferenciação Celular
9.
Stem Cell Res ; 66: 102990, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528979

RESUMO

Yes-associated protein (YAP), an important effector protein of the Hippo signaling pathway, acts as a molecular switch in controlling cell proliferation and apoptosis. In this study, a YAP-targeted isogenic sub-clone of the MUSIe002-A was generated, designated as MUSIe002-A-1. The MUSIe002-1 cell line had normal pluripotent stem cell characteristics and karyotype. Its ability to differentiate into three germ layers was confirmed. As reduction of YAP does not disturb the pluripotency of hESCs, this cell line serves as a valuable model to extrapolate the functional role of YAP in stem cell biology and its applications.


Assuntos
Células-Tronco Embrionárias Humanas , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco Embrionárias Humanas/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Sinalização YAP , Linhagem Celular
10.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498961

RESUMO

Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1, also known as TAZ) are transcriptional coactivators in the Hippo signaling pathway. Both are well-known regulators of cell proliferation and organ size control, and they have significant roles in promoting cell proliferation and differentiation. The roles of YAP and TAZ in stem cell pluripotency and differentiation have been extensively studied. However, the upstream mediators of YAP and TAZ are not well understood. Recently, a novel role of YAP in mechanosensing and mechanotransduction has been reported. The present review updates information on the regulation of YAP by mechanical cues such as extracellular matrix stiffness, fluid shear stress, and actin cytoskeleton tension in stem cell behaviors and differentiation. The review explores mesenchymal stem cell fate decisions, pluripotent stem cells (PSCs), self-renewal, pluripotency, and differentiation to blood products. Understanding how cells sense their microenvironment or niche and mimic those microenvironments in vitro could improve the efficiency of producing stem cell products and the efficacy of the products.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Células-Tronco Pluripotentes , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mecanotransdução Celular/fisiologia , Proteínas de Sinalização YAP , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Pluripotentes/metabolismo
11.
Stem Cell Res ; 64: 102929, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36183677

RESUMO

Human induced pluripotent stem cell (iPSC) line MUSIi020-A was generated from T cells isolated from peripheral blood of a healthy 37-year-old female and reprogrammed using episomal plasmid vectors. The established transgene-free MUSIi020-A, which retained a normal karyotype, displayed pluripotency as characterized by expression of pluripotency markers and by in vitro spontaneous differentiation toward three embryonic germ layers. This cell line may represent a valuable tool for studying T cell development and a potential cell source for cancer immunotherapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Feminino , Humanos , Adulto , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem Celular , Diferenciação Celular , Leucócitos Mononucleares/metabolismo , Plasmídeos/genética
12.
Heliyon ; 8(10): e10845, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36247165

RESUMO

Intermittent compressive force influences human periodontal ligament (PDL) cell behavior that facilitates periodontal tissue regeneration. In response to mechanical stimuli, Yes-associated protein (YAP) has been recognized as a mechanosensitive transcriptional activator that regulates cell proliferation and cell fate decisions. This study aimed to investigate whether compressive forces influence cell proliferation and cell fate decisions of human PDL cells via YAP signaling. YAP expression was silenced by shRNA. The effect of YAP on cell proliferation, adipogenesis and osteogenesis of PDL cells under ICF loading were determined. Adipogenic differentiation bias upon ICF loading was confirmed by fourier-transform infrared spectroscopy (FTIR). The results revealed that ICF-induced YAP promotes osteogenesis, but it inhibits adipogenesis in PDL cells. Depletion of YAP results in PDL cells that are irresponsive to ICF and, therefore, the failure of the PDL cells to undergo osteogenic differentiation. This was shown by a significant reduction in calcium deposited in the CF-derived osteoblasts of the YAP-knockdown (YAP-KD) PDL cells. As to control treatment, reduction of YAP promoted adipogenesis, whereas ICF-induced YAP inhibited this mechanism. However, the adipocyte differentiation in YAP-KD cells was not affected upon ICF treatment as the YAP-KD cells still exhibited a better adipogenic differentiation that was unrelated to the ICF. This study demonstrated that, in response to ICF treatment, YAP could be a crucial mechanosensitive transcriptional activator for the regulation of PDL cell behavior through a mechanobiological process. Our results may provide the possibility of facilitating PDL tissue regeneration by manipulation of the Hippo-YAP signaling pathway.

13.
Int J Biol Macromol ; 221: 1121-1129, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36115448

RESUMO

Levan is a bioactive polysaccharide that can be synthesized by various microorganisms. In this study, the physicochemical properties and bioactivity of levan synthesized by recombinant levansucrase from Erwinia tasmaniensis were investigated. The synthesis conditions, including the enzyme concentration, substrate concentration, and temperature, were optimized. The obtained levan generally appeared as a cloudy suspension. However, it could transform into a hydrogel at concentrations exceeding 10 % (w/v). Then, ultrasonication was utilized to reduce the molecular weight and increase the bioavailability of levan. Dynamic light scattering (DLS) and gel permeation chromatography (GPC) indicated that the size of levan was significantly decreased by ultrasonication, whereas Fourier transform infrared spectroscopy, 1H-nuclear magnetic resonance, and X-ray powder diffraction revealed that the chemical structure of levan was not changed. Finally, the bioactivities of both levan forms were examined using human osteosarcoma (Saos-2) cells. The result clearly illustrated that sonicated levan had higher antiproliferative activity in Saos-2 cells than original levan. Sonicated levan also activated Toll-like receptor expression at the mRNA level. These findings suggested the important beneficial applications of sonicated levan for the development of cancer therapies.


Assuntos
Hexosiltransferases , Osteossarcoma , Humanos , Ultrassom , Hexosiltransferases/química , Frutanos/química
14.
Stem Cell Res Ther ; 13(1): 467, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076260

RESUMO

BACKGROUND: Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1, also known as TAZ) are two key transcription co-activators of the Hippo pathway. Both were originally characterized as organ size and cell proliferation regulators. Later studies demonstrated that the Hippo pathway may play a role in Drosophila and mammal hematopoiesis. However, the role of the Hippo pathway in human erythropoiesis has not yet been fully elucidated. METHODS: The role of YAP and TAZ was studied in human erythropoiesis and hematopoietic stem cell (HSC) lineage determination by using mobilized peripheral blood (PB) and cord blood (CB)-derived HSC as a model. HSCs were isolated and cultured in an erythroid differentiation medium for erythroid differentiation and culture in methylcellulose assay for HSC lineage determination study. RESULTS: YAP and TAZ were barely detectable in human HSCs, but became highly expressed in pro-erythroblasts and erythroblasts. Depletion or knockdown of YAP and/or TAZ did not affect the ability of HSC lineage specification to erythroid lineage in either methylcellulose assay or liquid culture. However, depletion of YAP and TAZ did impair erythroblast terminal differentiation to erythrocytes and their enucleation. Moreover, ectopic expression of YAP and TAZ in pro-erythroblasts did not exert an apparent effect on erythroid differentiation, expansion, or morphology. CONCLUSIONS: This study demonstrated that YAP/TAZ plays important role in erythroid maturation and enucleation but is dispensable for lineage determination of human HSCs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transativadores , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Eritrócitos , Eritropoese/genética , Humanos , Mamíferos/metabolismo , Metilcelulose , Fosfoproteínas/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Stem Cells ; 40(12): 1078-1093, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36124999

RESUMO

Myeloid differentiation blockage at immature and self-renewing stages is a common hallmark across all subtypes of acute myeloid leukemia (AML), despite their genetic heterogeneity. Metabolic state is an important regulator of hematopoietic stem cell (HSC) self-renewal and lineage-specific differentiation as well as several aggressive cancers. However, how O-GlcNAcylation, a nutrient-sensitive posttranslational modification of proteins, contributes to both normal myelopoiesis and AML pathogenesis remains largely unknown. Using small molecule inhibitors and the CRISPR/Cas9 system, we reveal for the first time that inhibition of either OGA or OGT, which subsequently caused an increase or decrease in cellular O-GlcNAcylation, inhibits the self-renewal and maintenance of CD34+ hematopoietic stem/progenitor cells (HSPCs) and leukemic stem/progenitor cells and drives normal and malignant myeloid differentiation. We further unveiled the distinct roles of OGA and OGT inhibition in lineage-specific differentiation. While OGT inhibition induces macrophage differentiation, OGA inhibition promotes the differentiation of both CD34+ HSPCs and AML cells into dendritic cells (DCs), in agreement with an upregulation of a multitude of genes involved in DC development and function and their ability to induce T-cell proliferation, via STAT3/5 signaling. Our novel findings provide significant basic knowledge that could be important in understanding AML pathogenesis and overcoming differentiation blockage-agnostic to the genetic background of AML. Additionally, the parallel findings in normal HSPCs may lay the groundwork for future cellular therapy as a means to improve the ex vivo differentiation of normal DCs and macrophages.


Assuntos
Autorrenovação Celular , Leucemia Mieloide Aguda , Humanos , Antígenos CD34/metabolismo , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5
16.
Biomedicines ; 10(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35052826

RESUMO

The hippo signaling pathway plays an essential role in controlling organ size and balancing tissue homeostasis. Its two main effectors, yes-associated protein (YAP) and WW domain-containing transcription regulator 1, WWTR1 or TAZ, have also been shown to regulate endothelial cell functions and angiogenesis. In this study, the functions of YAP and TAZ in human endothelial progenitor cells (EPCs) were investigated by a loss-of-function study using CRISPR/Cas9-mediated gene knockdown (KD). Depletion of either YAP or TAZ reduced EPC survival and impaired many of their critical functions, including migration, invasion, vessel-formation, and expression of pro-angiogenic genes. Notably, TAZ-KD EPCs exhibited more severe phenotypes in comparison to YAP-KD EPCs. Moreover, the conditioned medium derived from TAZ-KD EPCs reduced the survivability of human lung cancer cells and increased their sensitivity to chemotherapeutic agents. The overexpression of either wild-type or constitutively active TAZ rescued the impaired phenotypes of TAZ-KD EPCs and restored the expression of pro-angiogenic genes in those EPCs. In summary, we demonstrate the crucial role of Hippo signaling components, YAP and TAZ, in controlling several aspects of EPC functions that can potentially be used as a drug target to enhance EPC functions in patients.

17.
Stem Cell Res ; 59: 102660, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35033856

RESUMO

The MUSIe002-A cell line was established from in vitro fertilization of human sperm and oocytes donated for research with informed consent. This cell line exhibited normal human embryonic stem cell (hESC) characteristics, including typical cell morphology, expression of all pluripotent stem cell markers, and potential to differentiate into three germ layers. A karyotyping analysis revealed 46 XY chromosome and cells that did not have mycoplasma contamination. MUSIe002-A represents a valuable unlimited cell source and is of potential interest for human in vitro stem cell based-models, genetic modifications, and stem cell-based therapy of human disease.

18.
Stem Cell Res ; 55: 102472, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34311438

RESUMO

Natural killer (NK) cells were isolated from human umbilical cord blood from a healthy newborn and reprogrammed by episomal vectors carrying reprograming factors L-MYC, LIN28, OCT4, SOX2, KLF4, EBNA-1, and shRNA against p53 delivered using nucleofection. The obtained MUSIi013-A human induced pluripotent stem cell (iPSC) line highly expressed pluripotency markers, had the capacity to differentiate into derivatives of the three germ layers, while retained a normal karyotype. This cell line may be a useful tool to study epigenic memory that may predispose hiPSCs to enhanced NK differentiation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Sangue Fetal , Humanos , Células Matadoras Naturais , Fator 4 Semelhante a Kruppel
19.
Antioxidants (Basel) ; 10(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070903

RESUMO

Mesenchymal stem cells (MSCs) are self-renewal and capable of differentiating to various functional cell types, including osteocytes, adipocytes, myoblasts, and chondrocytes. They are, therefore, regarded as a potential source for stem cell therapy. Fisetin is a bioactive flavonoid known as an active antioxidant molecule that has been reported to inhibit cell growth in various cell types. Fisetin was shown to play a role in regulating osteogenic differentiation in animal-derived MSCs; however, its molecular mechanism is not well understood. We, therefore, studied the effect of fisetin on the biological properties of human MSCs derived from chorion tissue and its role in human osteogenesis using MSCs and osteoblast-like cells (SaOs-2) as a model. We found that fisetin inhibited proliferation, migration, and osteogenic differentiation of MSCs as well as human SaOs-2 cells. Fisetin could reduce Yes-associated protein (YAP) activity, which results in downregulation of osteogenic genes and upregulation of fibroblast genes. Further analysis using molecular docking and molecular dynamics simulations suggests that fisetin occupied the hydrophobic TEAD pocket preventing YAP from associating with TEA domain (TEAD). This finding supports the potential application of flavonoids like fisetin as a protein-protein interaction disruptor and also suggesting an implication of fisetin in regulating human osteogenesis.

20.
Stem Cell Res ; 48: 101950, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32791482

RESUMO

In mammals, there are a number of kinases, including serine/threonine-protein kinase LATS1, that act as a core kinase of the Hippo pathway and that negatively regulate the Hippo effector protein YAP and its paralog TAZ. Using CRISPR/Cas9 technology, we established a stable LATS1 knockdown (LATS1-KD) iPSC from the MUSIi012-A cell line. The LATS1-KD iPSC MUSIi012-A-3 that was developed maintained both the normal karyotype and the pluripotent phenotype, and retained the ability to differentiate into all three embryonic germ layers.


Assuntos
Edição de Genes , Transdução de Sinais , Fatores de Transcrição , Animais , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina , Treonina , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA