Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Nano Mater ; 6(21): 20161-20172, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37969785

RESUMO

The gallium monochalcogenides family, comprising gallium sulfide (GaS), gallium selenide (GaSe), and gallium telluride (GaTe), is capturing attention for its applications in energy storage and production, catalysis, photonics, and optoelectronics. This interest originates from their properties, which include an optical bandgap larger than those of most common transition metal dichalcogenides, efficient light absorption, and significant carrier mobility. For any application, stability to air exposure is a fundamental requirement. Here, we perform a comparative study of the stability of layered GaS, GaSe, and GaTe nanometer-thick films down to a few layers with the goal of identifying the most suitable Ga chalcogenide for future integration in photonic and optoelectronic devices. Our study unveils a trend of decreasing air stability from sulfide to selenide and finally to telluride. Furthermore, we demonstrate a hydrogen passivation process to prevent the oxidation of GaSe with a higher feasibility and durability than other state-of-the-art passivation methods proposed in the literature.

3.
iScience ; 26(10): 107946, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37854690

RESUMO

Phase Change Materials (PCMs) have demonstrated tremendous potential as a platform for achieving diverse functionalities in active and reconfigurable micro-nanophotonic devices across the electromagnetic spectrum, ranging from terahertz to visible frequencies. This comprehensive roadmap reviews the material and device aspects of PCMs, and their diverse applications in active and reconfigurable micro-nanophotonic devices across the electromagnetic spectrum. It discusses various device configurations and optimization techniques, including deep learning-based metasurface design. The integration of PCMs with Photonic Integrated Circuits and advanced electric-driven PCMs are explored. PCMs hold great promise for multifunctional device development, including applications in non-volatile memory, optical data storage, photonics, energy harvesting, biomedical technology, neuromorphic computing, thermal management, and flexible electronics.

4.
Nanomaterials (Basel) ; 13(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836319

RESUMO

Among semiconductor metal oxides, that are an important class of sensing materials, titanium dioxide (TiO2) thin films are widely employed as sensors because of their high chemical and mechanical stability in harsh environments, non-toxicity, eco-compatibility, and photocatalytic properties. TiO2-based chemical oxygen demand (COD) sensors exploit the photocatalytic properties of TiO2 in inducing the oxidation of organic compounds to CO2. In this work, we discuss nanostructured TiO2 thin films grown via low-pressure metal organic chemical vapor deposition (MOCVD) on metallic AISI 316 mesh. To increase the surface sensing area, different inorganic acid-based chemical etching protocols have been developed, determining the optimal experimental conditions for adequate substrate roughness. Both chemically etched pristine meshes and the MOCVD-coated ones have been studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) microanalysis, and X-ray photoelectron spectroscopy (XPS). We demonstrate that etching by HCl/H2SO4 at 55 °C provides the most suitable surface morphology. To investigate the behavior of the developed high surface area TiO2 thin films as COD sensors, photocatalytic degradation of functional model pollutants based on ISO 10678:2010 has been tested, showing for the best performing acid-etched mesh coated with polycrystalline TiO2 an increase of 60% in activity, and degrading 66 µmol of MB per square meter per hour.

5.
Nanomaterials (Basel) ; 13(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770457

RESUMO

All-dielectric metasurfaces are a blooming field with a wide range of new applications spanning from enhanced imaging to structural color, holography, planar sensors, and directionality scattering. These devices are nanopatterned structures of sub-wavelength dimensions whose optical behavior (absorption, reflection, and transmission) is determined by the dielectric composition, dimensions, and environment. However, the functionality of these metasurfaces is fixed at the fabrication step by the geometry and optical properties of the dielectric materials, limiting their potential as active reconfigurable devices. Herein, a reconfigurable all-dielectric metasurface based on two high refractive index (HRI) materials like silicon (Si) and the phase-change chalcogenide antimony triselenide (Sb2Se3) for the control of scattered light is proposed. It consists of a 2D array of Si-Sb2Se3-Si sandwich disks embedded in a SiO2 matrix. The tunability of the device is provided through the amorphous-to-crystalline transition of Sb2Se3. We demonstrate that in the Sb2Se3 amorphous state, all the light can be transmitted, as it is verified using the zero-backward condition, while in the crystalline phase most of the light is reflected due to a resonance whose origin is the contribution of the electric (ED) and magnetic (MD) dipoles and the anapole (AP) of the nanodisks. By this configuration, a contrast in transmission (ΔT) of 0.81 at a wavelength of 980 nm by governing the phase of Sb2Se3 can be achieved.

6.
Opt Express ; 30(15): 27609-27622, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236929

RESUMO

Interest in layered van der Waals semiconductor gallium monosulfide (GaS) is growing rapidly because of its wide band gap value between those of two-dimensional transition metal dichalcogenides and of insulating layered materials such as hexagonal boron nitride. For the design of envisaged optoelectronic, photocatalytic and photonic applications of GaS, the knowledge of its dielectric function is fundamental. Here we present a combined theoretical and experimental investigation of the dielectric function of crystalline 2H-GaS from monolayer to bulk. Spectroscopic imaging ellipsometry with micron resolution measurements are corroborated by first principle calculations of the electronic structure and dielectric function. We further demonstrate and validate the applicability of the established dielectric function to the analysis of the optical response of c-axis oriented GaS layers grown by chemical vapor deposition (CVD). These optical results can guide the design of novel, to our knowledge, optoelectronic and photonic devices based on low-dimensional GaS.

7.
Opt Express ; 30(21): 38953-38965, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258447

RESUMO

Hot-carrier based photodetectors and enhanced by surface plasmons (SPs) hot-electron injection into semiconductors, are drawing significant attention. This photodetecting strategy yields to narrowband photoresponse while enabling photodetection at sub-bandgap energies of the semiconductor materials. In this work, we analyze the design of a reconfigurable photodetector based on a metal-semiconductor (MS) configuration with interdigitated dual-comb Au electrodes deposited on the semiconducting Sb2S3 phase-change material. The reconfigurability of the device relies on the changes of refractive index between the amorphous and crystalline phases of Sb2S3 that entail a modulation of the properties of the SPs generated at the dual-comb Au electrodes. An exhaustive numerical study has been realized on the Au grating parameters formed by the dual-comb electrodes, and on the SP order with the purpose of optimizing the absorption of the device, and thus, the responsivity of the photodetector. The optimized photodetector layout proposed here enables tunable narrowband photodetection from the O telecom band (λ = 1310 nm) to the C telecom band (λ = 1550 nm).

8.
iScience ; 25(6): 104377, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35620425

RESUMO

Antimony sulfide, Sb2S3, is interesting as the phase-change material for applications requiring high transmission from the visible to telecom wavelengths, with its band gap tunable from 2.2 to 1.6 eV, depending on the amorphous and crystalline phase. Here we present results from an interlaboratory study on the interplay between the structural change and resulting optical contrast during the amorphous-to-crystalline transformation triggered both thermally and optically. By statistical analysis of Raman and ellipsometric spectroscopic data, we have identified two regimes of crystallization, namely 250°C ≤ T < 300°C, resulting in Type-I spherulitic crystallization yielding an optical contrast Δn ∼ 0.4, and 300 ≤ T < 350°C, yielding Type-II crystallization bended spherulitic structure with different dielectric function and optical contrast Δn ∼ 0.2 below 1.5 eV. Based on our findings, applications of on-chip reconfigurable nanophotonic phase modulators and of a reconfigurable high-refractive-index core/phase-change shell nanoantenna are designed and proposed.

9.
Molecules ; 27(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35164355

RESUMO

We have synthetized two classes of dibenzofulvene-arylamino derivatives with an H-shape design, for a total of six different molecules. The molecular structures consist of two D-A-D units connected by a thiophene or bitiophene bridge, using diarylamino substituents as donor groups anchored to the 2,7- (Group A) and 3,6- (Group B) positions of the dibenzofulvene backbone. The donor units and the thiophene or bithiophene bridges were used as chemico-structural tools to modulate electro-optical and morphological-electrical properties. A combination of experiments, such as absorption measurements (UV-Vis spectroscopy), cyclic voltammetry, ellipsometry, Raman, atomic force microscopy, TD-DFT calculation and hole-mobility measurements, were carried out on the synthesized small organic molecules to investigate the differences between the two classes and therefore understand the relevance of the molecular design of the various properties. We found that the anchoring position on dibenzofulvene plays a crucial key for fine-tuning the optical, structural, and morphological properties of molecules. In particular, molecules with substituents in 2,7 positions (Group A) showed a lower structural disorder, a larger molecular planarity, and a lower roughness.

10.
Nanomaterials (Basel) ; 12(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35159811

RESUMO

From the group-III monochalcogenide (MX, M = Ga, In; X = S, Se, Te) layered semiconductors, gallium monosulfide, GaS, has emerged as a promising material for electronics, optoelectronics, and catalysis applications. In this work, GaS samples of various thicknesses in the range from 38 to 1665 nm have been obtained by mechanical exfoliation to study the interplay between structural, morphological, optical, and photoresponsivity properties as a function of thickness. This interplay has been established by analyzing the structure through Raman spectroscopy and X-ray diffraction, the morphology through scanning electron microscopy and atomic force microscopy, the density and optical properties through spectroscopic ellipsometry, and the photoresponsivity through current-voltage measurements under UV light. This work shows that photoresponsivity increases with increases in GaS thickness, resulting in a UV photoresponsivity of 1.5·10-4 AW-1 stable over several on/off cycles.

11.
Front Chem ; 9: 781467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869230

RESUMO

Group III layered monochalcogenide gallium sulfide, GaS, is one of the latest additions to the two-dimensional (2D) materials family, and of particular interest for visible-UV optoelectronic applications due to its wide bandgap energy in the range 2.35-3.05 eV going from bulk to monolayer. Interestingly, when going to the few-layer regime, changes in the electronic structure occur, resulting in a change in the properties of the material. Therefore, a systematic study on the thickness dependence of the different properties of GaS is needed. Here, we analyze mechanically exfoliated GaS layers transferred to glass substrates. Specifically, we report the dependence of the Raman spectra, photoluminescence, optical transmittance, resistivity, and work function on the thickness of GaS. Those findings can be used as guidance in designing devices based on GaS.

12.
Mater Horiz ; 8(1): 187-196, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821297

RESUMO

In this work we report the local growth of ordered arrays of 3D core-shell chiral nanohelices based on plasmonic gallium metal. The structures can be engineered in a single step using focused ion beam induced deposition, where a Ga+ ion source is used to shape the metallic nanohelix core, while the dielectric precursor is dissociated to create dielectric shells. The solubility of gallium in the different investigated dielectric matrices controls the core-shell thickness ratio of the nanohelices. The chiral plasmonic behaviour of these gallium-based nanostructures is experimentally measured by circularly polarized light transmission through nanostructure arrays and compared with numerical simulations. Large chiroptical effects in the visible range are demonstrated due to the plasmonic effects arising from gallium nanoclusters in the core.

13.
Adv Mater ; 33(29): e2100500, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34076312

RESUMO

Hydrogen is the key element to accomplish a carbon-free based economy. Here, the first evidence of plasmonic gallium (Ga) nanoantennas is provided as nanoreactors supported on sapphire (α-Al2 O3 ) acting as direct plasmon-enhanced photocatalyst for hydrogen sensing, storage, and spillover. The role of plasmon-catalyzed electron transfer between hydrogen and plasmonic Ga nanoparticle in the activation of those processes is highlighted, as opposed to conventional refractive index-change-based sensing. This study reveals that, while temperature selectively operates those various processes, longitudinal (LO-LSPR) and transverse (TO-LSPR) localized surface plasmon resonances of supported Ga nanoparticles open selectivity of localized reaction pathways at specific sites corresponding to the electromagnetic hot-spots. Specifically, the TO-LSPR couples light into the surface dissociative adsorption of hydrogen and formation of hydrides, whereas the LO-LSPR activates heterogeneous reactions at the interface with the support, that is, hydrogen spillover into α-Al2 O3 and reverse-oxygen spillover from α-Al2 O3. This Ga-based plasmon-catalytic platform expands the application of supported plasmon-catalysis to hydrogen technologies, including reversible fast hydrogen sensing in a timescale of a few seconds with a limit of detection as low as 5 ppm and in a broad temperature range from room-temperature up to 600 °C while remaining stable and reusable over an extended period of time.

14.
Nano Lett ; 20(5): 3352-3360, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32233512

RESUMO

Sulfur hexafluoride (SF6) is one of the most harmful greenhouse gases producing environmental risks. Therefore, developing ways of degrading SF6 without forming hazardous products is increasingly important. Herein, we demonstrate for the first time the plasmon-catalytic heterogeneous degradation of SF6 into nonhazardous MgF2 and MgSO4 products by nontoxic and sustainable plasmonic magnesium/magnesium oxide (Mg/MgO) nanoparticles, which are also effective as a plasmon-enhanced SF6 chemometric sensor. The main product depends on the excitation wavelength; when the localized surface plasmon resonance (LSPR) is in the ultraviolet, then MgF2 forms, while visible light LSPR results in MgSO4. Furthermore, Mg/MgO platforms can be regenerated in few seconds by hydrogen plasma treatment and can be reused in a new cycle of air purification. Therefore, this research first demonstrates effectiveness of Mg/MgO plasmon-catalysis enabling environmental remediation with the concurrent functionalities of monitoring, degrading, and detecting sulfur and fluorine gases in the atmosphere.

15.
Opt Express ; 27(4): A197-A205, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876135

RESUMO

Magnesium-based films and nanostructures are being studied in order to improve hydrogen reversibility, storage capacity, and kinetics, because of their potential in the hydrogen economy. Some challenges with magnesium (Mg) samples are their unavoidable oxidation by air exposure and lack of direct in situ real time measurements of hydrogen interaction with Mg and MgO surfaces and Mg plasmonic nanoparticles. Given these challenges, the present article investigates direct interaction of Mg with hydrogen, as well as implications of its inevitable oxidation by real-time spectroscopic ellipsometry for exploiting the optical properties of Mg, MgH2 and MgO. The direct hydrogenation measurements have been performed in a reactor that combines a remote hydrogen plasma source with an in situ spectroscopic ellipsometer, which allows optical monitoring of the hydrogen interaction and results in optical property modification. The hydrogen plasma dual use is to provide the hydrogen-atoms and to reduce barriers to heterogeneous hydrogen reactions.

16.
Nat Mater ; 15(9): 995-1002, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27454047

RESUMO

Gallium (Ga), a group III metal, is of fundamental interest due to its polymorphism and unusual phase transition behaviours. New solid phases have been observed when Ga is confined at the nanoscale. Herein, we demonstrate the stable coexistence, from 180 K to 800 K, of the unexpected solid γ-phase core and a liquid shell in substrate-supported Ga nanoparticles. We show that the support plays a fundamental role in determining Ga nanoparticle phases, with the driving forces for the nucleation of the γ-phase being the Laplace pressure in the nanoparticles and the epitaxial relationship of this phase to the substrate. We exploit the change in the amplitude of the evolving surface plasmon resonance of Ga nanoparticle ensembles during synthesis to reveal in real time the solid core formation in the liquid Ga nanoparticle. Finally, we provide a general framework for understanding how nanoscale confinement, interfacial and surface energies, and crystalline relationships to the substrate enable and stabilize the coexistence of unexpected phases.

17.
ACS Appl Mater Interfaces ; 7(7): 4151-9, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25686271

RESUMO

A simple and facile solution-based procedure is implemented for decorating a large area, monolayer graphene film, grown by chemical vapor deposition, with size-tunable light absorbing colloidal PbS nanocrystals (NCs). The hybrid is obtained by exposing a large area graphene film to a solution of 1-pyrene butyric acid surface coated PbS NCs, obtained by a capping exchange procedure onto presynthesized organic-capped NCs. The results demonstrate that at the interface, multiple and cooperative π-π stacking interactions promoted by the pyrene ligand coordinating the NC surface lead to a successful anchoring of the nano-objects on the graphene platform which concomitantly preserves its aromatic structure. Interligand interactions provide organization of the nano-objects in highly interconnected nanostructured multilayer coatings, where the NCs retain geometry and composition. The resulting hybrid exhibits a sheet resistance lower than that of bare graphene, which is explained in terms of electronic communication in the hybrid, due to the interconnection of the NC film and to a hole transfer from photoexcited PbS NCs to graphene, channelled at the interface by pyrene. Such a direct electron coupling makes the manufactured hybrid material an interesting component for optoelectronics, sensors and for optical communication and information technology.

18.
ACS Nano ; 9(2): 2049-60, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25629392

RESUMO

Gallium has recently been demonstrated as a phase-change plasmonic material offering UV tunability, facile synthesis, and a remarkable stability due to its thin, self-terminating native oxide. However, the dense irregular nanoparticle (NP) ensembles fabricated by molecular-beam epitaxy make optical measurements of individual particles challenging. Here we employ hyperspectral cathodoluminescence (CL) microscopy to characterize the response of single Ga NPs of various sizes within an irregular ensemble by spatially and spectrally resolving both in-plane and out-of-plane plasmonic modes. These modes, which include hybridized dipolar and higher-order terms due to phase retardation and substrate interactions, are correlated with finite difference time domain (FDTD) electrodynamics calculations that consider the Ga NP contact angle, substrate, and native Ga/Si surface oxidation. This study experimentally confirms previous theoretical predictions of plasmonic size-tunability in single Ga NPs and demonstrates that the plasmonic modes of interacting Ga nanoparticles can hybridize to produce strong hot spots in the ultraviolet. The controlled, robust UV plasmonic resonances of gallium nanoparticles are applicable to energy- and phase-specific applications such as optical memory, environmental remediation, and simultaneous fluorescence and surface-enhanced Raman spectroscopies.

19.
Phys Chem Chem Phys ; 16(27): 13948-55, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24898854

RESUMO

Fluorination of graphene enables tuning of its electronic properties, provided that control of the fluorination degree and of modification of graphene structure can be achieved. In this work we demonstrate that SF6 modulated plasma fluorination of monolayer graphene yields polyene-graphene hybrids. The extent of fluorination is determined by the plasma exposure time and controlled in real time by monitoring the change in the optical response by spectroscopic ellipsometry. Raman spectroscopy reveals the formation of polyenes in partially fluorinated graphene (F/C < 0.25), which are responsible for changes in conductivity and for opening a transport gap of ∼25 meV. We demonstrate that the cis- and trans-isomers of the polyenes in graphene are tunable using the photothermal switching. Specifically, the room temperature fluorination results in the cis-isomer that can be converted to the trans-isomer by annealing at T > 150 °C, whereas photoirradiation activates the trans-to-cis isomerization. The two isomers give to the polyene-graphene hybrids different optical and conductivity properties providing a way to engineer electrical response of graphene.

20.
ACS Nano ; 8(3): 3031-41, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24575951

RESUMO

Metal nanoparticle (NP)-graphene multifunctional platforms are of great interest for exploring strong light-graphene interactions enhanced by plasmons and for improving performance of numerous applications, such as sensing and catalysis. These platforms can also be used to carry out fundamental studies on charge transfer, and the findings can lead to new strategies for doping graphene. There have been a large number of studies on noble metal Au-graphene and Ag-graphene platforms that have shown their potential for a number of applications. These studies have also highlighted some drawbacks that must be overcome to realize high performance. Here we demonstrate the promise of plasmonic gallium (Ga) nanoparticle (NP)-graphene hybrids as a means of modulating the graphene Fermi level, creating tunable localized surface plasmon resonances and, consequently, creating high-performance surface-enhanced Raman scattering (SERS) platforms. Four prominent peculiarities of Ga, differentiating it from the commonly used noble (gold and silver) metals are (1) the ability to create tunable (from the UV to the visible) plasmonic platforms, (2) its chemical stability leading to long-lifetime plasmonic platforms, (3) its ability to n-type dope graphene, and (4) its weak chemical interaction with graphene, which preserves the integrity of the graphene lattice. As a result of these factors, a Ga NP-enhanced graphene Raman intensity effect has been observed. To further elucidate the roles of the electromagnetic enhancement (or plasmonic) mechanism in relation to electron transfer, we compare graphene-on-Ga NP and Ga NP-on-graphene SERS platforms using the cationic dye rhodamine B, a drug model biomolecule, as the analyte.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA