Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(12): e23143, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205073

RESUMO

This work presents the purification of petroleum condensate by removing arsenic ions via liquid-liquid extraction (LLE). Influence of pure and synergistic extractants is investigated. In terms of the practicability, following parameters are examined: the type of extractant, operating time, and temperature. Response surface methodology is used to design parameters such as organic-aqueous ratio and extractant concentration. Under optimal conditions; a mixture of 1 mol/L HCl and 0.02 mol/L thiourea with an organic/aqueous ratio of 1:4 at 323.15 K for 60 min, the extraction of arsenic reached 78.2 %. Further, batch simulation via two-stage counter-current extraction, and estimation by McCabe-Thiele diagram proved to be enhanced arsenic extraction to 95.3 %. Analysis by FTIR show that arsenic ions in petroleum condensate are formed as triphenylarsine compound ((C6H5)3As). The process of arsenic removal proved to be zero-order endothermic, irreversible and spontaneous reaction. The results obtained from the density functional theory (DFT) confirm that arsenic ions react with the synergistic extractant: effectively forming a covalent bond (As-S).

2.
J Environ Sci (China) ; 23(6): 931-40, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22066216

RESUMO

We applied the model of American Meteorological Society-Environmental Protection Agency Regulatory Model (AERMOD) as a tool for the analysis of nitrogen dioxide (NO2) emissions from a cement complex as a part of the environmental impact assessment. The dispersion of NO2 from four cement plants within the selected cement complex were investigated both by measurement and AERMOD simulation in dry and wet seasons. Simulated values of NO2 emissions were compared with those obtained during a 7-day continuous measurement campaign at 12 receptors. It was predicted that NO2 concentration peaks were found more within 1 to 5 km, where the measurement and simulation were in good agreement, than at the receptors 5 km further away from the reference point. The Quantile-Quantile plots of NO2 concentrations in dry season were mostly fitted to the middle line compared to those in wet season. This can be attributed to high NO2 wet deposition. The results show that for both the measurement and the simulation using the AERMOD, NO2 concentrations do not exceed the NO2 concentration limit set by the National Ambient Air Quality Standards (NAAQS) of Thailand. This indicates that NO2 emissions from the cement complex have no significant impact on nearby communities. It can be concluded that the AERMOD can provide useful information to identify high pollution impact areas for the EIA guidelines.


Assuntos
Poluentes Atmosféricos/análise , Materiais de Construção , Meio Ambiente , Resíduos Industriais/análise , Modelos Teóricos , Dióxido de Nitrogênio/análise , Monitoramento Ambiental/métodos , Humanos , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA