Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Anal Methods ; 15(36): 4767-4776, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37697917

RESUMO

In order to achieve rapid, sensitive, and high-throughput determination of typical semi-volatile organic compounds (SVOCs) in soil samples, a method for the rapid determination of 63 SVOCs in soil was developed by optimizing and improving the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction technique in conjunction with gas chromatography-mass spectrometry (GC-MS) analysis. A small amount of soil sample (5.0 g) was vortexed with 10 mL of a mixture of acetone and n-hexane (V/V = 1 : 1) for 2 min, followed by rapid vortex purification and centrifugation using a mixture of copper powder and octadecylsilane (C18) dispersant. The resulting supernatant was then purified through a 0.22 µm filter membrane. The results showed that the 63 SVOCs exhibited good linear relationships within the concentration range of 100-5000 µg L-1, with correlation coefficients (R2) above 0.99. The method detection limit (MDL = 3.3 Sy/m) was lower than 0.050 mg kg-1. At a spike concentration of 1 mg kg-1, the recovery rates of the 63 SVOCs were almost above 70% (n = 7). Compared with the rapid solvent extraction (ASE) method specified in US EPA 3545 standard, this method reduced the organic solvent usage by 14 times and significantly shortened the operation time. Furthermore, this method did not involve any transfer or concentration steps of the extractant during the experimental process, reducing the exposure time of toxic compounds and providing support for the principles of green analytical chemistry. Moreover, in the detection of most compounds in the same batch of contaminated soil, the extraction results obtained by QuEChERS were superior to those obtained by the ASE method, providing evidence for the practical application of this method. This method is rapid, simple, accurate, requires a small sample volume, and causes minimal environmental pollution. It provides a high-throughput detection method for the rapid screening of SVOCs in soil.

3.
Adv Mater ; 35(40): e2304490, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562376

RESUMO

The prevalence of wide-bandgap (WBG) semiconductors allows modern electronic devices to operate at much higher frequencies. However, development of soft magnetic materials with high-frequency properties matching the WBG-based devices remains challenging. Here, a promising nanocrystalline-amorphous composite alloy with a normal composition Fe75.5 Co0.5 Mo0.5 Cu1 Nb1.5 Si13 B8 in atomic percent is reported, which is producible under industrial conditions, and which shows an exceptionally high permeability at high frequencies up to 36 000 at 100 kHz, an increase of 44% compared with commercial FeSiBCuNb nanocrystalline alloy (25 000 ± 2000 at 100 kHz), outperforming all existing nanocrystalline alloy systems and commercial soft magnetic materials. The alloy is obtained by a unique magnetic-heterogeneous nanocrystallization mechanism in an iron-based amorphous alloy, which is different from the traditional strategy of nanocrystallization by doping nonmagnetic elements (e.g., Cu and Nb). The induced magnetic inhomogeneity by adding Co atoms locally promotes the formation of highly ordered structures acting as the nuclei of nanocrystals, and Mo atoms agglomerate around the interfaces of the nanocrystals, inhibiting nanocrystal growth, resulting in an ultrafine nanocrystalline-amorphous dual-phase structure in the alloy. The exceptional soft magnetic properties are shown to be closely related to the low magnetic anisotropy and the unique spin rotation mechanism under alternating magnetic fields.

4.
Proc Natl Acad Sci U S A ; 120(24): e2302281120, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276419

RESUMO

Relaxation dynamics, as a key to understand glass formation and glassy properties, remains an elusive and challenging issue in condensed matter physics. In this work, in situ high-pressure synchrotron high-energy X-ray photon correlation spectroscopy has been developed to probe the atomic-scale relaxation dynamics of a cerium-based metallic glass during compression. Although the sample density continuously increases, the collective atomic motion initially slows down as generally expected and then counterintuitively accelerates with further compression (density increase), showing an unusual nonmonotonic pressure-induced steady relaxation dynamics cross-over at ~3 GPa. Furthermore, by combining in situ high-pressure synchrotron X-ray diffraction, the relaxation dynamics anomaly is evidenced to closely correlate with the dramatic changes in local atomic structures during compression, rather than monotonically scaling with either sample density or overall stress level. These findings could provide insight into relaxation dynamics and their relationship with local atomic structures of glasses.

5.
Nat Commun ; 14(1): 2341, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095113

RESUMO

Solution growth of single-crystal ferroelectric oxide films has long been pursued for the low-cost development of high-performance electronic and optoelectronic devices. However, the established principles of vapor-phase epitaxy cannot be directly applied to solution epitaxy, as the interactions between the substrates and the grown materials in solution are quite different. Here, we report the successful epitaxy of single-domain ferroelectric oxide films on Nb-doped SrTiO3 single-crystal substrates by solution reaction at a low temperature of ~200 oC. The epitaxy is mainly driven by an electronic polarization screening effect at the interface between the substrates and the as-grown ferroelectric oxide films, which is realized by the electrons from the doped substrates. Atomic-level characterization reveals a nontrivial polarization gradient throughout the films in a long range up to ~500 nm because of a possible structural transition from the monoclinic phase to the tetragonal phase. This polarization gradient generates an extremely high photovoltaic short-circuit current density of ~2.153 mA/cm2 and open-circuit voltage of ~1.15 V under 375 nm light illumination with power intensity of 500 mW/cm2, corresponding to the highest photoresponsivity of ~4.306×10-3 A/W among all known ferroelectrics. Our results establish a general low-temperature solution route to produce single-crystal gradient films of ferroelectric oxides and thus open the avenue for their broad applications in self-powered photo-detectors, photovoltaic and optoelectronic devices.

6.
Proc Natl Acad Sci U S A ; 120(8): e2216367120, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36791111

RESUMO

Recently, evidence for a conducting surface state (CSS) below 19 K was reported for the correlated d-electron small gap semiconductor FeSi. In the work reported herein, the CSS and the bulk phase of FeSi were probed via electrical resistivity ρ measurements as a function of temperature T, magnetic field B to 60 T, and pressure P to 7.6 GPa, and by means of a magnetic field-modulated microwave spectroscopy (MFMMS) technique. The properties of FeSi were also compared with those of the Kondo insulator SmB6 to address the question of whether FeSi is a d-electron analogue of an f-electron Kondo insulator and, in addition, a "topological Kondo insulator" (TKI). The overall behavior of the magnetoresistance of FeSi at temperatures above and below the onset temperature TS = 19 K of the CSS is similar to that of SmB6. The two energy gaps, inferred from the ρ(T) data in the semiconducting regime, increase with pressure up to about 7 GPa, followed by a drop which coincides with a sharp suppression of TS. Several studies of ρ(T) under pressure on SmB6 reveal behavior similar to that of FeSi in which the two energy gaps vanish at a critical pressure near the pressure at which TS vanishes, although the energy gaps in SmB6 initially decrease with pressure, whereas in FeSi they increase with pressure. The MFMMS measurements showed a sharp feature at TS ≈ 19 K for FeSi, which could be due to ferromagnetic ordering of the CSS. However, no such feature was observed at TS ≈ 4.5 K for SmB6.

7.
Plant Commun ; 4(4): 100562, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36814384

RESUMO

Erianthus produces substantial biomass, exhibits a good Brix value, and shows wide environmental adaptability, making it a potential biofuel plant. In contrast to closely related sorghum and sugarcane, Erianthus can grow in degraded soils, thus releasing pressure on agricultural lands used for biofuel production. However, the lack of genomic resources for Erianthus hinders its genetic improvement, thus limiting its potential for biofuel production. In the present study, we generated a chromosome-scale reference genome for Erianthus fulvus Nees. The genome size estimated by flow cytometry was 937 Mb, and the assembled genome size was 902 Mb, covering 96.26% of the estimated genome size. A total of 35 065 protein-coding genes were predicted, and 67.89% of the genome was found to be repetitive. A recent whole-genome duplication occurred approximately 74.10 million years ago in the E. fulvus genome. Phylogenetic analysis showed that E. fulvus is evolutionarily closer to S. spontaneum and diverged after S. bicolor. Three of the 10 chromosomes of E. fulvus formed through rearrangements of ancestral chromosomes. Phylogenetic reconstruction of the Saccharum complex revealed a polyphyletic origin of the complex and a sister relationship of E. fulvus with Saccharum sp., excluding S. arundinaceum. On the basis of the four amino acid residues that provide substrate specificity, the E. fulvus SWEET proteins were classified as mono- and disaccharide sugar transporters. Ortho-QTL genes identified for 10 biofuel-related traits may aid in the rapid screening of E. fulvus populations to enhance breeding programs for improved biofuel production. The results of this study provide valuable insights for breeding programs aimed at improving biofuel production in E. fulvus and enhancing sugarcane introgression programs.


Assuntos
Saccharum , Saccharum/genética , Biocombustíveis , Filogenia , Cromossomos de Plantas/genética , Melhoramento Vegetal
8.
J Asian Nat Prod Res ; 25(9): 842-848, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36562123

RESUMO

Further investigation on the roots of Aconitum weixiense led to the isolation of two new bis-diterpenoid alkaloids, named as weisaconitines E and F (1-2), which were elucidated by IR, HR-ESI-MS, 1D- and 2D-NMR analyses. Their structures are characterized as denudatine-atisine-type bis-diterpenoid alkaloids.


Assuntos
Aconitum , Alcaloides , Diterpenos , Medicamentos de Ervas Chinesas , Aconitum/química , Estrutura Molecular , Alcaloides/química , Medicamentos de Ervas Chinesas/química , Diterpenos/química , Raízes de Plantas/química
9.
Materials (Basel) ; 15(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36143630

RESUMO

Spatial heterogeneity, as a crucial structural feature, has been intensively studied in metallic glasses (MGs) using various techniques, including two-dimensional nanoindentation mapping. However, the limiting spatial resolution of nanoindentation mapping on MGs remains unexplored. In this study, a comprehensive study on four representative MGs using nanoindentation mapping with a Berkovich indenter was carried out by considering the influence of a normalized indentation spacing d/h (indentation spacing/maximum indentation depth). It appeared to have no significant correlation with the measured hardness and elastic modulus when d/h > 10. The hardness and elastic modulus started to increase slightly (up to ~5%) when d/h < 10 and further started to decrease obviously when d/h < 5. The mechanism behind these phenomena was discussed based on a morphology analysis of residual indents using scanning electron microscopy and atomic force microscopy. It was found that the highest spatial resolution of ~200 nm could be achieved with d/h = 10 using a typical Berkovich indenter for nanoindentation mapping on MGs, which was roughly ten times the curvature radius of the Berkovich indenter tip (not an ideal triangular pyramid) used in this study. These results help to promote the heterogeneity studies of MGs using nanoindentation that are capable of covering a wide range of length scales with reliable and consistent results.

10.
Nature ; 608(7923): 513-517, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35978124

RESUMO

High pressure induces dramatic changes and novel phenomena in condensed volatiles1,2 that are usually not preserved after recovery from pressure vessels. Here we report a process that pressurizes volatiles into nanopores of type 1 glassy carbon precursors, converts glassy carbon into nanocrystalline diamond by heating and synthesizes free-standing nanostructured diamond capsules (NDCs) capable of permanently preserving volatiles at high pressures, even after release back to ambient conditions for various vacuum-based diagnostic probes including electron microscopy. As a demonstration, we perform a comprehensive study of a high-pressure argon sample preserved in NDCs. Synchrotron X-ray diffraction and high-resolution transmission electron microscopy show nanometre-sized argon crystals at around 22.0 gigapascals embedded in nanocrystalline diamond, energy-dispersive X­ray spectroscopy provides quantitative compositional analysis and electron energy-loss spectroscopy details the chemical bonding nature of high-pressure argon. The preserved pressure of the argon sample inside NDCs can be tuned by controlling NDC synthesis pressure. To test the general applicability of the NDC process, we show that high-pressure neon can also be trapped in NDCs and that type 2 glassy carbon can be used as the precursor container material. Further experiments on other volatiles and carbon allotropes open the possibility of bringing high-pressure explorations on a par with mainstream condensed-matter investigations and applications.

11.
Transl Pediatr ; 11(6): 813-824, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35800272

RESUMO

Background: To determine the congenital heart defect (CHD) prevalence and identify the associated risk factors in children within the multi-ethnic Yunnan Region of China. Methods: This is a prospective matched case-control screening study. Screening for CHD in children residing within 28 county districts of Yunnan Province during the period of January 2001 to December 2016 was conducted. A total of 2,421 and CHD cohort and 24,210 control cohort were derived from a total population of 400,855 children (under 18 years of age). Results: A total of 2,421 children were diagnosed with CHD, yielding a CHD prevalence of 6.04 cases per 1,000 children. The prevalence of CHD by sex was 6.54 per 1,000 females versus 5.59 per 1,000 males. The ethnic groups displaying the highest CHD prevalence were the Lisu (15.51 per 1,000), Achang (13.18 per 1,000), Jingpo (12.32 per 1,000), Naxi (9.68 per 1,000), and Tibetan (8.57 per 1,000), respectively. The most common CHD was atrial septal defect, amounting to 1.94 instances per 1,000 children. We identified a number of child-associated parameters that significantly correlated with greater CHD risk, such as lower mass at birth, shorter duration of gestation, and younger age at the time of screening. We also identified a number of maternal and familial risk factors. Conclusions: This ultrasonic color Doppler imaging study revealed a relatively commonplace prevalence of CHD. Moreover, the prevalence of CHD in Yunnan Region significantly varied with sex and ethnic status. Certain child-associated, maternal, and familial risk factors may contribute to CHD risk.

12.
Phys Rev Lett ; 124(18): 185701, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32441959

RESUMO

The mechanism of plasticity in nanostructured Si has been intensively studied over the past decade but still remains elusive. Here, we used in situ high-pressure radial x-ray diffraction to simultaneously monitor the deformation and structural evolution of a large number of randomly oriented Si nanoparticles (SiNPs). In contrast to the high-pressure ß-Sn phase dominated plasticity observed in large SiNPs (∼100 nm), small SiNPs (∼9 nm) display a high-pressure simple hexagonal phase dominated plasticity. Meanwhile, dislocation activity exists in all of the phases, but significantly weakens as the particle size decreases and only leads to subtle plasticity in the initial diamond cubic phase. Furthermore, texture simulations identify major active slip systems in all of the phases. These findings elucidate the origin of plasticity in nanostructured Si under stress and provide key guidance for the application of nanostructured Si.

13.
Nat Commun ; 11(1): 314, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949139

RESUMO

Metallic glasses are expected to have quite tunable structures in their configuration space, without the strict constraints of a well-defined crystalline symmetry and large energy barriers separating different states in crystals. However, effectively modulating the structure of metallic glasses is rather difficult. Here, using complementary in situ synchrotron x-ray techniques, we reveal thermal-driven structural ordering in a Ce65Al10Co25 metallic glass, and a reverse disordering process via a pressure-induced rejuvenation between two states with distinct structural order characteristics. Studies on other metallic glass samples with different compositions also show similar phenomena. Our findings demonstrate the feasibility of two-way structural tuning states in terms of their dramatic ordering and disordering far beyond the nearest-neighbor shells with the combination of temperature and pressure, extending accessible states of metallic glasses to unexplored configuration spaces.

14.
Entropy (Basel) ; 21(3)2019 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33266954

RESUMO

High-entropy alloys (HEAs) as a new class of alloy have been at the cutting edge of advanced metallic materials research in the last decade. With unique chemical and topological structures at the atomic level, HEAs own a combination of extraordinary properties and show potential in widespread applications. However, their phase stability/transition, which is of great scientific and technical importance for materials, has been mainly explored by varying temperature. Recently, pressure as another fundamental and powerful parameter has been introduced to the experimental study of HEAs. Many interesting reversible/irreversible phase transitions that were not expected or otherwise invisible before have been observed by applying high pressure. These recent findings bring new insight into the stability of HEAs, deepens our understanding of HEAs, and open up new avenues towards developing new HEAs. In this paper, we review recent results in various HEAs obtained using in situ static high-pressure synchrotron radiation x-ray techniques and provide some perspectives for future research.

15.
Nat Commun ; 8(1): 322, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831044

RESUMO

Diamond owes its unique mechanical, thermal, optical, electrical, chemical, and biocompatible materials properties to its complete sp 3-carbon network bonding. Crystallinity is another major controlling factor for materials properties. Although other Group-14 elements silicon and germanium have complementary crystalline and amorphous forms consisting of purely sp 3 bonds, purely sp 3-bonded tetrahedral amorphous carbon has not yet been obtained. In this letter, we combine high pressure and in situ laser heating techniques to convert glassy carbon into "quenchable amorphous diamond", and recover it to ambient conditions. Our X-ray diffraction, high-resolution transmission electron microscopy and electron energy-loss spectroscopy experiments on the recovered sample and computer simulations confirm its tetrahedral amorphous structure and complete sp 3 bonding. This transparent quenchable amorphous diamond has, to our knowledge, the highest density among amorphous carbon materials, and shows incompressibility comparable to crystalline diamond.Diamond's properties are dictated by its crystalline, fully tetrahedrally bonded structure. Here authors synthesize a bulk sp 3-bonded amorphous form of carbon under high pressure and temperature, show that it has bulk modulus comparable to crystalline diamond and that it can be recovered under ambient conditions.

16.
Nat Commun ; 8: 15687, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569758

RESUMO

Polymorphism, which describes the occurrence of different lattice structures in a crystalline material, is a critical phenomenon in materials science and condensed matter physics. Recently, configuration disorder was compositionally engineered into single lattices, leading to the discovery of high-entropy alloys and high-entropy oxides. For these novel entropy-stabilized forms of crystalline matter with extremely high structural stability, is polymorphism still possible? Here by employing in situ high-pressure synchrotron radiation X-ray diffraction, we reveal a polymorphic transition from face-centred-cubic (fcc) structure to hexagonal-close-packing (hcp) structure in the prototype CoCrFeMnNi high-entropy alloy. The transition is irreversible, and our in situ high-temperature synchrotron radiation X-ray diffraction experiments at different pressures of the retained hcp high-entropy alloy reveal that the fcc phase is a stable polymorph at high temperatures, while the hcp structure is more thermodynamically favourable at lower temperatures. As pressure is increased, the critical temperature for the hcp-to-fcc transformation also rises.

17.
Proc Natl Acad Sci U S A ; 113(7): 1714-8, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26831105

RESUMO

Metallic glass (MG) is an important new category of materials, but very few rigorous laws are currently known for defining its "disordered" structure. Recently we found that under compression, the volume (V) of an MG changes precisely to the 2.5 power of its principal diffraction peak position (1/q1). In the present study, we find that this 2.5 power law holds even through the first-order polyamorphic transition of a Ce68Al10Cu20Co2 MG. This transition is, in effect, the equivalent of a continuous "composition" change of 4f-localized "big Ce" to 4f-itinerant "small Ce," indicating the 2.5 power law is general for tuning with composition. The exactness and universality imply that the 2.5 power law may be a general rule defining the structure of MGs.

18.
Sci Rep ; 4: 5167, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24893772

RESUMO

Glass is a freezing phase of a deeply supercooled liquid. Despite its simple definition, the origin of glass forming ability (GFA) is still ambiguous, even for binary Cu-Zr alloys. Here, we directly study the stability of the supercooled Cu-Zr liquids where we find that Cu64Zr36 at a supercooled temperature shows deeper undercoolability and longer persistence than other neighbouring compositions with an equivalent driving Gibbs free energy. This observation implies that the GFA of the Cu-Zr alloys is significantly affected by crystal-liquid interfacial free energy. In particular, the crystal-liquid interfacial free energy of Cu64Zr36 in our measurement was higher than that of other neighbouring liquids and, coincidently a molecular dynamics simulation reveals a larger glass-glass interfacial energy value at this composition, which reflects more distinct configuration difference between liquid and crystal phase. The present results demonstrate that the higher crystal-liquid interfacial free energy is a prerequisite of good GFA of the Cu-Zr alloys.

19.
Proc Natl Acad Sci U S A ; 110(25): 10068-72, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23733928

RESUMO

When a material is heated, generally, it dilates. Here, we find a general trend that the average distance between a center atom and atoms in the first nearest-neighbor shell contracts for several metallic melts upon heating. Using synchrotron X-ray diffraction technique and molecular dynamics simulations, we elucidate that this anomaly is caused by the redistribution of polyhedral clusters affected by temperature. In metallic melts, the high-coordinated polyhedra are inclined to evolve into low-coordinated ones with increasing temperature. As the coordination number decreases, the average atomic distance between a center atom and atoms in the first shell of polyhedral clusters is reduced. This phenomenon is a ubiquitous feature for metallic melts consisting of various-sized polyhedra. This finding sheds light on the understanding of atomic structures and thermal behavior of disordered materials and will trigger more experimental and theoretical studies of liquids, amorphous alloys, glasses, and casting temperature effect on solidification process of crystalline materials.


Assuntos
Ligas/química , Temperatura Alta , Teste de Materiais/métodos , Metais/química , Alumínio/química , Ouro/química , Níquel/química , Prata/química , Síncrotrons , Estanho/química , Difração de Raios X , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA