Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38786136

RESUMO

Due to widespread overuse, pharmaceutical compounds, such as antibiotics, are becoming increasingly prevalent in greater concentrations in aquatic ecosystems. In this study, we investigated the capacity of the white-rot fungus, Coriolopsis gallica (a high-laccase-producing fungus), to biodegrade ampicillin under different cultivation conditions. The biodegradation of the antibiotic was confirmed using high-performance liquid chromatography, and its antibacterial activity was evaluated using the bacterial growth inhibition agar well diffusion method, with Escherichia coli as an ampicillin-sensitive test strain. C. gallica successfully eliminated ampicillin (50 mg L-1) after 6 days of incubation in a liquid medium. The best results were achieved with a 9-day-old fungal culture, which treated a high concentration (500 mg L-1) of ampicillin within 3 days. This higher antibiotic removal rate was concomitant with the maximum laccase production in the culture supernatant. Meanwhile, four consecutive doses of 500 mg L-1 of ampicillin were removed by the same fungal culture within 24 days. After that, the fungus failed to remove the antibiotic. The measurement of the ligninolytic enzyme activity showed that C. gallica laccase might participate in the bioremediation of ampicillin.

2.
Environ Technol ; : 1-14, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403904

RESUMO

Due to its important role in the formation of humic acids (HA), improving lignin degradation during composting has usually been considered a challenge. One practice that could stimulate the biodegradation of this recalcitrant molecule is inoculation with exogenous lignolytic fungal strains. Two composts (C1) and (C2) from piles (H1) and (H2) were evaluated. H1 was the control pile and H2 was inoculated at maturity with Trametes trogii, resulting in a 35% increase in lignin degradation rate compared to H1. The aim of this study was to show the main effects of this increase on the humification process in the co-composting of green waste, coffee grounds and olive mill wastewater sludge (OMWWs). Microstructure of HA1 and HA2 extracted from C1 and C2, respectively, was also investigated by scanning electron microscopy (SEM) and SEM coupled with energy-dispersive X-ray spectroscopy (X-EDS). The results showed that there were several similarities between the compost samples tested. These included the mineral content, the degree of polymerization (PD)> 1 and the compact and rigid surface of the extracted HA. However, C2 was characterized by a higher humic content (HC), degree of polymerization (PD), humification index (HI) and percentage of humic acids (PHA) than C1. Carbon-13 nuclear magnetic resonance (13C-NMR) and Fourier transmission-infrared spectroscopy (FTIR) analysis showed that aliphatic groups such as hydroxyls, alcohols and carboxyls were predominant in both composts. SEM analysis in conjunction with X-EDS analysis of HA2 showed a higher proportion of carbon and potassium (18 and 7.93%) than in HA1 (14 and 0.95%).

3.
3 Biotech ; 12(6): 142, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35664650

RESUMO

In the current investigation, the capacity of different yeast strains to decolorize reactive black 5 (RB-5) was assessed. A comparative study between the different strains demonstrated that Saccharomyces cerevisiae X19G2 exhibited the highest decolorization rate (69.20 ± 1.16%) after 48 h of incubation. This strain was selected to optimize the medium components' concentrations for maximum RB-5 decolorization. Response-surface methodology (RSM) was tested for the most significant parameters (glucose, yeast extract and RB-5 dye concentrations) that were previously determined by Plackett-Burman design. A dye decolorization rate of 99.59 ± 0.24% was achieved within 48 h using a maximum RB-5 concentration (0.15 g/L) with glucose and yeast extract concentrations equalling to 10.5 g/L and 1 g/L, respectively. Experimental data results proved to fit well with the pseudo-second order kinetics model. The phytotoxicity assessment was carried out using Raphanus sativus seeds to determine the toxicity of RB-5 before and after treatment by S. cerevisiae. Results suggested that germination rate and the length of seeds radical irrigated with 0.15 g/L of RB-5 decreased by 30 and 53%, compared to those irrigated with treated solution. Therefore, metabolites derived from decolorization of RB-5 by S. cerevisiae X19G2 were significantly less toxic than the original dye.

4.
Environ Technol ; 42(5): 731-742, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31304884

RESUMO

Aerobic biodegradation of biocomposites has been studied in both solid and liquid media. The research was concentrated on the biodegradation under aerobic and mesophilic conditions using poly-d-lactic acid (PDLA) and PDLA/cellulose microfibres (CMFs) samples as the sole carbon source. To determine the efficiency of the biodegradation, quantitative (mass variations, optical density (OD)) and qualitative (FTIR, NMR and SEM) analyses have been used to follow the polymer changes after degradation. The weight loss and OD of the biocomposites samples PDLA/CMFs were slower than that of pristine PDLA. The PDLA displayed the most important loss of weight (7.09%, 8.95%) compared to its initial weight and the lowest weight loss was detected in PDLA/CMF300 (1.04%, 2.19%) in solid and liquid mediums respectively. Also, the OD value of PDLA was increased from the seven days (0.381) to the last day (0.969). It appears that the major rate-determining factor affecting material degradation was its crystallinity without or with minimal assistance from abiotic factor because crystalline phases inhibit the diffusion of small water molecules. Otherwise, the Pseudomonas aeruginosa was isolated from Mediterranean soil has been found to be a novel candidate to biodegrade PDLA under mesophilic conditions.


Assuntos
Celulose , Pseudomonas aeruginosa , Biodegradação Ambiental , Ácido Láctico , Polímeros
5.
Environ Sci Pollut Res Int ; 27(31): 39402-39412, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32642904

RESUMO

The present study focused on the full valorization of the tomato by-product, also known as tomato pomace consisting mainly of tomato peels and tomato seeds, by recovering natural antioxidants and edible oil, and subsequently reutilizing the leftover solid residues for the production of low-cost biosorbent. The tomato peel extract recovered using ethanol as food-grade solvent contained high phenol and flavonoid contents (199.35 ± 0.35-mg gallic acid equivalents (GAE)/g and 102.10 ± 0.03-mg quercetin equivalent (QE)/g, respectively). Even its lower content of lycopene (3.67 ± 0.04 mg/100 g), tomato peel extract showed potent antioxidant activity and can be therefore used as natural antioxidants either for food or cosmetic applications. High nutritional quality edible oil (17.15%) was extracted from tomato seeds and showed richness in unsaturated fatty acids (74.62%), with linoleic acid being the most abundant polyunsaturated fatty acid (49.70%). After recovery of these valuable compounds, the extraction solid leftovers were used to produce low-cost biosorbent tested for dye removal. Results showed that the highest biosorption yields were increasingly attributed to the acidic, direct, anthraquinone, then reactive dyes. Overall, the obtained results strongly support the complete utilization of tomato pomace for the recovery of valuable compounds and the sequential production of low-cost biosorbent.


Assuntos
Solanum lycopersicum , Antioxidantes , Licopeno , Fenóis/análise , Extratos Vegetais , Sementes/química
6.
Ecotoxicol Environ Saf ; 190: 110103, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31887707

RESUMO

Multi-contaminated industrial wastewaters pose serious environmental risks due to high toxicity and non-biodegradability. The work reported here evaluated the ability of Pseudomonas aeruginosa strain Gb30 isolated from desert soil to simultaneously remove cadmium (Cd) and Reactive Black 5 (RB5), both common contaminants in various industrial effluents. The strain was able to grow normally and decolorize 50 mg L-1 RB5 within 24 h of incubation in the presence of 0.629 m mol L-1 of Cd2+. In order to evaluate strain performance in RB5 detoxification, a cytotoxicity test using Human Embryonic Kidney cells (HEK293) was used. Cadmium removal from culture media was determined using atomic adsorption. Even in presence of (0.115 + 0.157 + 0.401 + 0.381) m mol L-1, respectively, of Cr6+, Cd2+, Cu2+ and Zn2+ in the growth medium, strain Gb30 successfully removed 35% of RB5 and 44%, 36%, 59% and 97%, respectively, of introduced Zn2+, Cu2+, Cr6+ and Cd2+, simultaneously. In order to understand the mechanism of Cd removal used by P. aeruginosa strain Gb30, biosorption and bioaccumulation abilities were examined. The strain was preferentially biosorbing Cd on the cell surface, as opposed to intracellular bioaccumulation. Microscopic investigations using AFM, SEM and FTIR analysis of the bacterial biomass confirmed the presence of various structural features, which enabled the strain to interact with metal ions. The study suggests that Pseudomonas aeruginosa Gb30 is a potential candidate for bioremediation of textile effluents in the presence of complex dye-metal contamination.


Assuntos
Biodegradação Ambiental , Cádmio/metabolismo , Naftalenossulfonatos/metabolismo , Poluentes do Solo/metabolismo , Adsorção , Bactérias/metabolismo , Biomassa , Células HEK293 , Humanos , Metais Pesados/análise , Pseudomonas aeruginosa/metabolismo , Solo , Poluentes do Solo/análise , Águas Residuárias/química
7.
Biomed Res Int ; 2019: 2907542, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31687385

RESUMO

INTRODUCTION: Algae have been used as natural ingredients to produce new canned fish burgers prepared from minced flesh of common barbel. In this research, the impact of the addition of Cystoseira compressa and Jania adhaerens at concentrations of 0.5, 1, and 1.5% w/v on the texture and sensory characteristics of fish burgers were investigated. RESULTS: Compared to controls, fish burgers containing 1% algae had better texture and sensory properties (P < 0.05). Also, these burger formulations had higher water and oil holding capacities as well as swelling ability, due to the important polysaccharides and dietary fibers contents of algae. In addition, algae-supplemented burgers were characterized as having low L⁎, a⁎, and b⁎ values, which made the color appear to be paler. Thanks to their high richness in pigments (chlorophylls and carotenoids) and polysaccharides, algae considerably enhance the antioxidant activities of the new ready-to-eat fish burgers. So, Cystoseira compressa and Jania adhaerens could be used as nutritious additives to produce new fish-based products.


Assuntos
Antioxidantes/química , Cianobactérias/química , Cyprinidae/metabolismo , Aditivos Alimentares/química , Animais , Cor , Culinária , Cianobactérias/metabolismo , Fibras na Dieta , Produtos Pesqueiros , Manipulação de Alimentos , Produtos da Carne , Alimentos Marinhos
8.
Environ Sci Pollut Res Int ; 26(18): 18392-18402, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31049863

RESUMO

The removal of Acid Orange 51 (AO 51) dye in aqueous solution by microscale zero-valent iron (m-ZVI) was investigated. The m-ZVI powder was characterized granulometrically by laser particle sizer and morphologically by transmission electron microscopy (TEM). The effects of pH, m-ZVI concentration, H2O2 addition, and dye concentration on the decolorization of AO 51 were experimentally investigated. Results indicate that the removal efficiency is independent from pH values, increases with increasing ZVI dosage, and decreases with dye concentration. With 1 g/L of m-ZVI, AO 51 was effectively removed without and with addition of 25 mM H2O2, yielding a decolorization efficiency of around 70% and 98%, respectively, at pH 3 within 60 min of reaction time. The involvement of ˙OH in oxidizing AO 51 was examined by measuring the removal rates based on ˙OH scavenging molecule. Finally, the disappearance of AO 51 was estimated by monitoring the UV-Vis spectral evolution after 120 min of treatment while the Fourier-Transform Infrared spectroscopy (FT-IR) was performed to verify the occurrence of organic sorption on m-ZVI surface. The scanning electron microscope (SEM) images before and after the reaction illustrated morphological changes on m-ZVI surface. The detoxification of the treated solution was demonstrated using phytotoxicity test.


Assuntos
Compostos Azo/análise , Peróxido de Hidrogênio/química , Ferro/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Propriedades de Superfície
9.
3 Biotech ; 9(6): 228, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31139543

RESUMO

The endocrine-disrupting chemical bisphenol A (BPA) has attracted much attention because of its estrogenic activity and widespread environmental contamination. In this study, we investigated the BPA biodegradation abilities of various bacterial strains isolated from deserts and arid soils from southern Tunisia. Ten bacterial strains that belong to Pseudomonas putida, Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella sp. and Pantoea sp. showed high BPA removal potential in mineral salt medium (MSM) containing 1 mM BPA. BPA removal rates varied between strains and ranged from 36 to 97%. The strain G320 (P. putida) presented the highest BPA removal rate with 97% within 4 days at 30 °C. The half-life when increasing the BPA concentration to 3 mM was 2 days for strain G320, while total degradation was achieved within 8 days. BPA biodegradation products were identified by GC-MS, and their toxicity was assessed by an algal toxicity test. BPA detoxification was confirmed by evaluating the effect of its biodegradation metabolites on algal growth (dry weight), cells morphology and chlorophylls levels of Tetraselmis sp. strain V2. Results showed the interesting potential of desert soil's bacteria in BPA detoxification as well as the eventual use of the algal specie in toxicity assessment.

10.
3 Biotech ; 8(11): 478, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30456012

RESUMO

The textiles manufacturing is one of the core industries that release a huge amount of dyes during the dyeing process. As a result, the growing demand of an efficient and low-cost treatment has given rise to alternative adsorbents. In the present study, prickly pear cactus cladodes powder (PPCP) of Opuntia ficus indica was investigated as an ecofriendly and low-cost biosorbent of Acid orange 51 (AO51) and Reactive Red 75 (RR75) dyes commonly used in dyeing. The FTIR spectroscopic characterization of PPCP showed the heterogeneity in surface structure and functional groups which confers to the biosorbent its capability to interact with acidic (AO51) and reactive (RR75) dyes molecules. Effects of pH, temperature, initial dye concentration and adsorbent dose on adsorption yield were investigated. The dyes uptake process was closely fitted to the pseudo-second order kinetic for both dyes. Experimental data were analyzed by applying the Langmuir, Freundlich, Dubinin-Raduskevich, Temkin, Redlich-Peterson, and BET isotherms equations. The models of BET and Langmuir were considered as the best isotherms models fitting experimental data, respectively, of RR75 and AO51. The maximum Langmuir monolayer biosorption capacities were of 198.9 and 45 mg g-1, respectively for RR75 and AO51.

11.
3 Biotech ; 7(5): 329, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28955626

RESUMO

A novel fungal laccase produced by the ascomycete Chaetomium sp. isolated from arid soil was purified and characterized and its ability to remove dyes was determined. Extracellular laccase was purified 15-fold from the crude culture to homogeneity with an overall yield of 50% using ultrafiltration and anion-exchange chromatography. The purified enzyme was found to be a monomeric protein with a molecular mass of 68 kDa, estimated by SDS-PAGE, and with an isoelectric point of 5.5. The optimal temperature and pH value for laccase activity toward 2,6-DMP were 60 °C and 3.0, respectively. It was stable at temperatures below 50 °C and at alkaline conditions. Kinetic study showed that this laccase showed higher affinity on ABTS than on 2,6-DMP. Its activity was enhanced by the presence of several metal ions such as Mg2+, Ca2+ and Zn2+, while it was strongly inhibited by Fe2+, Ag+ and Hg2+. The novel laccase also showed high, remarkable sodium chloride tolerance. Its ability to decolorize different dyes, with or without HBT (1-hydroxy-benzotriazole), as redox mediator, suggests that this protein may be useful for different industrial applications and/or bioremediation processes.

12.
Environ Sci Pollut Res Int ; 24(28): 22476-22484, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28803404

RESUMO

Other than the established environmental risk factors associated with bladder cancer (BC), little is known about the genetic variations determining the individual susceptibility of this complex disease. This study aimed to investigate the relationship of BC with environmental agents and polymorphisms in XRCC1, ERCC2, and ERCC3 DNA repair genes and CYP1A1, CYP2D6, NAT1, and NAT2 xenobiotic metabolism genes through a hospital-based case-control study in Tunisia. The selection of the single nucleotide polymorphisms (SNPs) (rs25487, rs 13181, rs415407, rs446421, rs1058172, rs4921880, and rs1208) was performed using the dbSNP database. DNA genotyping was determined by PCR-RFLP after DNA extraction from whole blood. The risks of BC associated with every polymorphism as well as the studied environmental factors were estimated by multivariate-adjusted logistic regression using R software. In addition, gene-gene interactions were analyzed using generalized multifactor dimensionality reduction (GMDR) methods. Results showed that tobacco smoking and chewing parameters were significantly associated with BC risk. Single-gene variant analysis showed significant associations of the TT genotype of CYP1A1 and the rare GG genotype of ERCC2 with bladder cancer susceptibility (OR = 1.34, 95% CI 1.22-1.40, P < 0.0001). According to GMDR analysis, our findings indicated a significant association between BC and gene-gene interaction among the CYP1A1, ERCC3, and XRCC1. The present results suggest a potential role of XRCC1, ERCC2, ERCC3, and CYP1A1 besides tobacco intake in susceptibility to BC.


Assuntos
Citocromo P-450 CYP1A1/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Polimorfismo de Nucleotídeo Único , Fumar , Neoplasias da Bexiga Urinária/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Arilamina N-Acetiltransferase , Estudos de Casos e Controles , Reparo do DNA , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Fragmento de Restrição , Nicotiana , Tunísia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA