Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Adv Sci (Weinh) ; : e2309268, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704686

RESUMO

Broadly neutralizing antibodies are proposed as therapeutic and prophylactic agents against HIV-1, but their potency and breadth are less than optimal. This study describes the immunization of a llama with the prefusion-stabilized HIV-1 envelope (Env) trimer, BG505 DS-SOSIP, and the identification and improvement of potent neutralizing nanobodies recognizing the CD4-binding site (CD4bs) of vulnerability. Two of the vaccine-elicited CD4bs-targeting nanobodies, G36 and R27, when engineered into a triple tandem format with llama IgG2a-hinge region and human IgG1-constant region (G36×3-IgG2a and R27×3-IgG2a), neutralized 96% of a multiclade 208-strain panel at geometric mean IC80s of 0.314 and 0.033 µg mL-1, respectively. Cryo-EM structures of these nanobodies in complex with Env trimer revealed the two nanobodies to neutralize HIV-1 by mimicking the recognition of the CD4 receptor. To enhance their neutralizing potency and breadth, nanobodies are linked to the light chain of the V2-apex-targeting broadly neutralizing antibody, CAP256V2LS. The resultant human-llama bispecific antibody CAP256L-R27×3LS exhibited ultrapotent neutralization and breadth exceeding other published HIV-1 broadly neutralizing antibodies, with pharmacokinetics determined in FcRn-Fc mice similar to the parent CAP256V2LS. Vaccine-elicited llama nanobodies, when combined with V2-apex broadly neutralizing antibodies, may therefore be able to fulfill anti-HIV-1 therapeutic and prophylactic clinical goals.

2.
Nat Commun ; 14(1): 7593, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989731

RESUMO

The HIV-1 fusion peptide (FP) represents a promising vaccine target, but global FP sequence diversity among circulating strains has limited anti-FP antibodies to ~60% neutralization breadth. Here we evolve the FP-targeting antibody VRC34.01 in vitro to enhance FP-neutralization using site saturation mutagenesis and yeast display. Successive rounds of directed evolution by iterative selection of antibodies for binding to resistant HIV-1 strains establish a variant, VRC34.01_mm28, as a best-in-class antibody with 10-fold enhanced potency compared to the template antibody and ~80% breadth on a cross-clade 208-strain neutralization panel. Structural analyses demonstrate that the improved paratope expands the FP binding groove to accommodate diverse FP sequences of different lengths while also recognizing the HIV-1 Env backbone. These data reveal critical antibody features for enhanced neutralization breadth and potency against the FP site of vulnerability and accelerate clinical development of broad HIV-1 FP-targeting vaccines and therapeutics.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Anticorpos Anti-HIV , Anticorpos Neutralizantes , Peptídeos , Sequência de Aminoácidos , Vacinas de Subunidades Antigênicas , Testes de Neutralização , Produtos do Gene env do Vírus da Imunodeficiência Humana
3.
Res Sq ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37886518

RESUMO

The vaccine elicitation of HIV-neutralizing antibodies with tier-2-neutralization breadth has been a challenge. Here, we report the isolation and characteristics of a CD4-binding site specific monoclonal antibody, HmAb64, from a human volunteer immunized with a polyvalent gp120 DNA prime-protein boost vaccine. HmAb64 derived from heavy chain variable germline gene IGHV1-18, light chain germline gene IGKV1-39, and had a 3rd heavy chain complementarity determining region (CDR H3) of 15 amino acids. On a cross-clade panel of 208 HIV-1 pseudo-virus strains, HmAb64 neutralized 21 (10%), including tier-2 neutralization resistant strains from clades B, BC, C, and G. The cryo-EM structure of the antigen-binding fragment of HmAb64 bound to a conformation between prefusion closed and occluded open forms of envelope trimer, using both heavy and light CDR3s to recognize the CD4-binding loop, a critical component of the CD4-binding site. A gp120 subunit-based vaccine can thus elicit an antibody capable of tier 2-HIV neutralization.

4.
Cell Rep ; 42(7): 112711, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436900

RESUMO

Broadly neutralizing antibodies (bNAbs) against HIV can reduce viral transmission in humans, but an effective therapeutic will require unusually high breadth and potency of neutralization. We employ the OSPREY computational protein design software to engineer variants of two apex-directed bNAbs, PGT145 and PG9RSH, resulting in increases in potency of over 100-fold against some viruses. The top designed variants improve neutralization breadth from 39% to 54% at clinically relevant concentrations (IC80 < 1 µg/mL) and improve median potency (IC80) by up to 4-fold over a cross-clade panel of 208 strains. To investigate the mechanisms of improvement, we determine cryoelectron microscopy structures of each variant in complex with the HIV envelope trimer. Surprisingly, we find the largest increases in breadth to be a result of optimizing side-chain interactions with highly variable epitope residues. These results provide insight into mechanisms of neutralization breadth and inform strategies for antibody design and improvement.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Anticorpos Anti-HIV , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Microscopia Crioeletrônica , Testes de Neutralização
5.
MAbs ; 15(1): 2223350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37345226

RESUMO

The amino-acid composition of the immunoglobulin variable region has been observed to impact antibody pharmacokinetics (PK). Here, we sought to improve the PK of the broad HIV-1-neutralizing VRC01-class antibodies, VRC07-523LS and N6LS, by reducing the net positive charge in their variable domains. We used a structure-guided approach to generate a panel of antibody variants incorporating select Arg or Lys substituted to Asp, Gln, Glu, or Ser. The engineered variants exhibited reduced affinity to heparin, reduced polyreactivity, and improved PK in human FcRn-transgenic mice. One variant, VRC07-523LS.v34, with three charge substitutions, had an observed in vivo half-life and an estimated human half-life of 10.8 and 60 days, respectively (versus 5.4 and 38 days for VRC07-523LS) and retained functionality, neutralizing 92% of a 208-strain panel at a geometric mean IC80 <1 µg/mL. Another variant, N6LS.C49, with two charge substitutions, had an observed in vivo half-life and an estimated human half-life of 14.5 and 80 days (versus 9.0 and 44 days for N6LS) and neutralized ~80% of 208 strains at a geometric mean IC80 <1 µg/mL. Since Arg and Lys residues are prevalent in human antibodies, we propose substitution of select Arg or Lys with Asp, Gln, Glu, or Ser in the framework region as a general means to improve PK of therapeutic antibodies.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Camundongos , Animais , Anticorpos Anti-HIV , Anticorpos Amplamente Neutralizantes , Camundongos Transgênicos , Infecções por HIV/tratamento farmacológico , Anticorpos Neutralizantes
6.
J Virol ; 97(5): e0160422, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098956

RESUMO

While neutralizing antibodies that target the HIV-1 fusion peptide have been elicited in mice by vaccination, antibodies reported thus far have been from only a single antibody class that could neutralize ~30% of HIV-1 strains. To explore the ability of the murine immune system to generate cross-clade neutralizing antibodies and to investigate how higher breadth and potency might be achieved, we tested 17 prime-boost regimens that utilized diverse fusion peptide-carrier conjugates and HIV-1 envelope trimers with different fusion peptides. We observed priming in mice with fusion peptide-carrier conjugates of variable peptide length to elicit higher neutralizing responses, a result we confirmed in guinea pigs. From vaccinated mice, we isolated 21 antibodies, belonging to 4 distinct classes of fusion peptide-directed antibodies capable of cross-clade neutralization. Top antibodies from each class collectively neutralized over 50% of a 208-strain panel. Structural analyses - both X-ray and cryo-EM - revealed each antibody class to recognize a distinct conformation of fusion peptide and to have a binding pocket capable of accommodating diverse fusion peptides. Murine vaccinations can thus elicit diverse neutralizing antibodies, and altering peptide length during prime can improve the elicitation of cross-clade responses targeting the fusion peptide site of HIV-1 vulnerability. IMPORTANCE The HIV-1 fusion peptide has been identified as a site for elicitation of broadly neutralizing antibodies, with prior studies demonstrating that priming with fusion peptide-based immunogens and boosting with soluble envelope (Env) trimers can elicit cross-clade HIV-1-neutralizing responses. To improve the neutralizing breadth and potency of fusion peptide-directed responses, we evaluated vaccine regimens that incorporated diverse fusion peptide-conjugates and Env trimers with variation in fusion peptide length and sequence. We found that variation in peptide length during prime elicits enhanced neutralizing responses in mice and guinea pigs. We identified vaccine-elicited murine monoclonal antibodies from distinct classes capable of cross-clade neutralization and of diverse fusion peptide recognition. Our findings lend insight into improved immunogens and regimens for HIV-1 vaccine development.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , Soropositividade para HIV , HIV-1 , Animais , Cobaias , Camundongos , Anticorpos Anti-HIV , Isotipos de Imunoglobulinas , Vacinação , Peptídeos , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Produtos do Gene env do Vírus da Imunodeficiência Humana , Infecções por HIV/prevenção & controle
7.
MAbs ; 15(1): 2165390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36729903

RESUMO

Antibody CAP256-VRC26.25 targets the second hypervariable region (V2) at the apex of the HIV envelope (Env) trimer with extraordinary neutralization potency, although less than optimal breadth. To improve breadth, we linked the light chain of CAP256V2LS, an optimized version of CAP256-VRC26.25 currently under clinical evaluation, to the llama nanobody J3, which has broad CD4-binding site-directed neutralization. The J3-linked bispecific antibody exhibited improved breadth and potency over both J3 and CAP256V2LS, indicative of synergistic neutralization. The cryo-EM structure of the bispecific antibody in complex with a prefusion-closed Env trimer revealed simultaneous binding of J3 and CAP256V2LS. We further optimized the pharmacokinetics of the bispecific antibody by reducing the net positive charge of J3. The optimized bispecific antibody, which we named CAP256.J3LS, had a half-life similar to CAP256V2LS in human FcRn knock-in mice and exhibited suitable auto-reactivity, manufacturability, and biophysical risk. CAP256.J3LS neutralized over 97% of a multiclade 208-strain panel (geometric mean concentration for 80% inhibition (IC80) 0.079 µg/ml) and 100% of a 100-virus clade C panel (geometric mean IC80 of 0.05 µg/ml), suggesting its anti-HIV utility especially in regions where clade C dominates.


Assuntos
Anticorpos Biespecíficos , Infecções por HIV , HIV-1 , Humanos , Animais , Camundongos , Anticorpos Neutralizantes , Testes de Neutralização , Anticorpos Anti-HIV , Sítios de Ligação
8.
Sci Rep ; 12(1): 17876, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284200

RESUMO

The broadly neutralizing antibody (bNAb) CAP256-VRC26.25 has exceptional potency against HIV-1 and has been considered for clinical use. During the characterization and production of this bNAb, we observed several unusual features. First, the antibody appeared to adhere to pipette tips, requiring tips to be changed during serial dilution to accurately measure potency. Second, during production scale-up, proteolytic cleavage was discovered to target an extended heavy chain loop, which was attributed to a protease in spent medium from 2-week culture. To enable large scale production, we altered the site of cleavage via a single amino acid change, K100mA. The resultant antibody retained potency and breadth while avoiding protease cleavage. We also added the half-life extending mutation LS, which improved the in vivo persistence in animal models, but did not impact neutralization activity; we observed the same preservation of neutralization for bNAbs VRC01, N6, and PGDM1400 with LS on a 208-virus panel. The final engineered antibody, CAP256V2LS, retained the extraordinary neutralization potency of the parental antibody, had a favorable pharmacokinetic profile in animal models, and was negative in in vitro assessment of autoreactivity. CAP256V2LS has the requisite potency, developability and suitability for scale-up, allowing its advancement as a clinical candidate.


Assuntos
Infecções por HIV , HIV-1 , Animais , Anticorpos Amplamente Neutralizantes , Meia-Vida , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Peptídeo Hidrolases , Aminoácidos
9.
Structure ; 30(6): 862-875.e4, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35413243

RESUMO

Nanobodies can achieve remarkable neutralization of genetically diverse pathogens, including HIV-1. To gain insight into their recognition, we determined crystal structures of four llama nanobodies (J3, A12, C8, and D7), all of which targeted the CD4-binding site, in complex with the HIV-1 envelope (Env) gp120 core, and determined a cryoelectron microscopy (cryo-EM) structure of J3 with the Env trimer. Crystal and cryo-EM structures of J3 complexes revealed this nanobody to mimic binding to the prefusion-closed trimer for the primary site of CD4 recognition as well as a secondary quaternary site. In contrast, crystal structures of A12, C8, and D7 with gp120 revealed epitopes that included portions of the gp120 inner domain, inaccessible on the prefusion-closed trimer. Overall, these structures explain the broad and potent neutralization of J3 and limited neutralization of A12, C8, and D7, which utilized binding modes incompatible with the neutralization-targeted prefusion-closed conformation of Env.


Assuntos
Camelídeos Americanos , HIV-1 , Anticorpos de Domínio Único , Animais , Anticorpos Neutralizantes/química , Sítios de Ligação , Antígenos CD4 , Camelídeos Americanos/metabolismo , Microscopia Crioeletrônica , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIV , HIV-1/química
10.
Adv Sci (Weinh) ; 9(15): e2200063, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35319830

RESUMO

Understanding maturation pathways of broadly neutralizing antibodies (bnAbs) against HIV-1 can be highly informative for HIV-1 vaccine development. A lineage of J038 bnAbs is now obtained from a long-term SHIV-infected macaque. J038 neutralizes 54% of global circulating HIV-1 strains. Its binding induces a unique "up" conformation for one of the V2 loops in the trimeric envelope glycoprotein and is heavily dependent on glycan, which provides nearly half of the binding surface. Their unmutated common ancestor neutralizes the autologous virus. Continuous maturation enhances neutralization potency and breadth of J038 lineage antibodies via expanding antibody-Env contact areas surrounding the core region contacted by germline-encoded residues. Developmental details and recognition features of J038 lineage antibodies revealed here provide a new pathway for elicitation and maturation of V2-targeting bnAbs.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Epitopos , Anticorpos Anti-HIV , Humanos , Produtos do Gene env do Vírus da Imunodeficiência Humana
11.
Nat Commun ; 12(1): 6470, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753907

RESUMO

Antibody-Framework-to-Antigen Distance (AFAD) - the distance between the body of an antibody and a protein antigen - is an important parameter governing antibody recognition. Here, we quantify AFAD for ~2,000 non-redundant antibody-protein-antigen complexes in the Protein Data Bank. AFADs showed a gaussian distribution with mean of 16.3 Å and standard deviation (σ) of 2.4 Å. Notably, antibody-antigen complexes with extended AFADs (>3σ) were exclusively human immunodeficiency virus-type 1 (HIV-1)-neutralizing antibodies. High correlation (R2 = 0.8110) was observed between AFADs and glycan coverage, as assessed by molecular dynamics simulations of the HIV-1-envelope trimer. Especially long AFADs were observed for antibodies targeting the glycosylated trimer apex, and we tested the impact of introducing an apex-glycan hole (N160K); the cryo-EM structure of the glycan hole-targeting HIV-1-neutralizing antibody 2909 in complex with an N160K-envelope trimer revealed a substantially shorter AFAD. Overall, extended AFADs exclusively recognized densely glycosylated surfaces, with the introduction of a glycan hole enabling closer recognition.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Complexo Antígeno-Anticorpo/metabolismo , Epitopos/imunologia , Epitopos/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , HIV-1/imunologia , HIV-1/metabolismo , Humanos , Simulação de Dinâmica Molecular
12.
Cell Rep ; 37(5): 109922, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731616

RESUMO

Recognition of N-linked glycan at residue N276 (glycan276) at the periphery of the CD4-binding site (CD4bs) on the HIV-envelope trimer is a formidable challenge for many CD4bs-directed antibodies. To understand how this glycan can be recognized, here we isolate two lineages of glycan276-dependent CD4bs antibodies. Antibody CH540-VRC40.01 (named for donor-lineage.clone) neutralizes 81% of a panel of 208 diverse strains, while antibody CH314-VRC33.01 neutralizes 45%. Cryo-electron microscopy (cryo-EM) structures of these two antibodies and 179NC75, a previously identified glycan276-dependent CD4bs antibody, in complex with HIV-envelope trimer reveal substantially different modes of glycan276 recognition. Despite these differences, binding of glycan276-dependent antibodies maintains a glycan276 conformation similar to that observed in the absence of glycan276-binding antibodies. By contrast, glycan276-independent CD4bs antibodies, such as VRC01, displace glycan276 upon binding. These results provide a foundation for understanding antibody recognition of glycan276 and suggest its presence may be crucial for priming immunogens seeking to initiate broad CD4bs recognition.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Epitopos , HIV-1/imunologia , Polissacarídeos/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/metabolismo , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Amplamente Neutralizantes/ultraestrutura , Antígenos CD4/imunologia , Antígenos CD4/metabolismo , Microscopia Crioeletrônica , Células HEK293 , HIV-1/metabolismo , Humanos , Modelos Moleculares , Polissacarídeos/metabolismo , Ligação Proteica , Conformação Proteica , Imagem Individual de Molécula , Relação Estrutura-Atividade , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
13.
Cell Rep ; 36(7): 109561, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407396

RESUMO

Elicitation of broadly neutralizing antibodies (bnAbs) by an HIV vaccine will involve priming the immune system to activate antibody precursors, followed by boosting immunizations to select for antibodies with functional features required for neutralization breadth. The higher the number of acquired mutations necessary for function, the more convoluted are the antibody developmental pathways. HIV bnAbs acquire a large number of somatic mutations, but not all mutations are functionally important. In this study, we identify a minimal subset of mutations sufficient for the function of the naturally occurring V3-glycan bnAb DH270.6. Using antibody library screening, candidate envelope immunogens that interact with DH270.6-like antibodies containing this set of key mutations are identified and selected in vitro. Our results demonstrate that less complex B cell evolutionary pathways than those naturally observed exist for the induction of HIV bnAbs by vaccination, and they establish rational approaches to identify boosting candidate immunogens.


Assuntos
Anticorpos Neutralizantes/imunologia , Linfócitos B/citologia , Linhagem da Célula , Mutação/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Sequência de Aminoácidos , Linhagem Celular , Humanos , Mutagênese/genética , Ligação Proteica , Vacinação , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
14.
MAbs ; 13(1): 1946918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34328065

RESUMO

Passive transfer of broadly neutralizing antibodies is showing promise in the treatment and prevention of HIV-1. One class of antibodies, the VRC01 class, appears especially promising. To improve VRC01-class antibodies, we combined structure-based design with a matrix-based approach to generate VRC01-class variants that filled an interfacial cavity, used diverse third-complementarity-determining regions, reduced potential steric clashes, or exploited extended contacts to a neighboring protomer within the envelope trimer. On a 208-strain panel, variant VRC01.23LS neutralized 90% of the panel at a geometric mean IC80 less than 1 µg/ml, and in transgenic mice with human neonatal-Fc receptor, the serum half-life of VRC01.23LS was indistinguishable from that of the parent VRC01LS, which has a half-life of 71 d in humans. A cryo-electron microscopy structure of VRC01.23 Fab in complex with BG505 DS-SOSIP.664 Env trimer determined at 3.4-Å resolution confirmed the structural basis for its ~10-fold improved potency relative to VRC01. Another variant, VRC07-523-F54-LS.v3, neutralized 95% of the 208-isolated panel at a geometric mean IC80 of less than 1 µg/ml, with a half-life comparable to that of the parental VRC07-523LS. Our matrix-based structural approach thus enables the engineering of VRC01 variants for HIV-1 therapy and prevention with improved potency, breadth, and pharmacokinetics.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Infecções por HIV , HIV-1/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/farmacologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Humanos , Camundongos Knockout
15.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649208

RESUMO

Vaccine-based elicitation of broadly neutralizing antibodies holds great promise for preventing HIV-1 transmission. However, the key biophysical markers of improved antibody recognition remain uncertain in the diverse landscape of potential antibody mutation pathways, and a more complete understanding of anti-HIV-1 fusion peptide (FP) antibody development will accelerate rational vaccine designs. Here we survey the mutational landscape of the vaccine-elicited anti-FP antibody, vFP16.02, to determine the genetic, structural, and functional features associated with antibody improvement or fitness. Using site-saturation mutagenesis and yeast display functional screening, we found that 1% of possible single mutations improved HIV-1 envelope trimer (Env) affinity, but generally comprised rare somatic hypermutations that may not arise frequently in vivo. We observed that many single mutations in the vFP16.02 Fab could enhance affinity >1,000-fold against soluble FP, although affinity improvements against the HIV-1 trimer were more measured and rare. The most potent variants enhanced affinity to both soluble FP and Env, had mutations concentrated in antibody framework regions, and achieved up to 37% neutralization breadth compared to 28% neutralization of the template antibody. Altered heavy- and light-chain interface angles and conformational dynamics, as well as reduced Fab thermal stability, were associated with improved HIV-1 neutralization breadth and potency. We also observed parallel sets of mutations that enhanced viral neutralization through similar structural mechanisms. These data provide a quantitative understanding of the mutational landscape for vaccine-elicited FP-directed broadly neutralizing antibody and demonstrate that numerous antigen-distal framework mutations can improve antibody function by enhancing affinity simultaneously toward HIV-1 Env and FP.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Mutação , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/genética , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Anti-HIV/genética , HIV-1/genética , Humanos , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
16.
Immunity ; 54(2): 324-339.e8, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33453152

RESUMO

Vaccine elicitation of broadly neutralizing antibodies (bnAbs) is a key HIV-research goal. The VRC01 class of bnAbs targets the CD4-binding site on the HIV-envelope trimer and requires extensive somatic hypermutation (SHM) to neutralize effectively. Despite substantial progress, vaccine-induced VRC01-class antibodies starting from unmutated precursors have exhibited limited neutralization breadth, particularly against viruses bearing glycan on loop D residue N276 (glycan276), present on most circulating strains. Here, using sequential immunization of immunoglobulin (Ig)-humanized mice expressing diverse unmutated VRC01-class antibody precursors, we elicited serum responses capable of neutralizing viruses bearing glycan276 and isolated multiple lineages of VRC01-class bnAbs, including two with >50% breadth on a 208-strain panel. Crystal structures of representative bnAbs revealed the same mode of recognition as known VRC01-class bnAbs. Structure-function studies further pinpointed key mutations and correlated their induction with specific immunizations. VRC01-class bnAbs can thus be matured by sequential immunization from unmutated ancestors to >50% breadth, and we delineate immunogens and regimens inducing key SHM.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , HIV-1/fisiologia , Mutação/genética , Animais , Anticorpos Amplamente Neutralizantes/genética , Modelos Animais de Doenças , Células HEK293 , Anticorpos Anti-HIV/genética , Humanos , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Hipermutação Somática de Imunoglobulina , Vacinação
17.
Science ; 371(6525)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33214287

RESUMO

Neutralizing antibodies elicited by HIV-1 coevolve with viral envelope proteins (Env) in distinctive patterns, in some cases acquiring substantial breadth. We report that primary HIV-1 envelope proteins-when expressed by simian-human immunodeficiency viruses in rhesus macaques-elicited patterns of Env-antibody coevolution very similar to those in humans, including conserved immunogenetic, structural, and chemical solutions to epitope recognition and precise Env-amino acid substitutions, insertions, and deletions leading to virus persistence. The structure of one rhesus antibody, capable of neutralizing 49% of a 208-strain panel, revealed a V2 apex mode of recognition like that of human broadly neutralizing antibodies (bNAbs) PGT145 and PCT64-35S. Another rhesus antibody bound the CD4 binding site by CD4 mimicry, mirroring human bNAbs 8ANC131, CH235, and VRC01. Virus-antibody coevolution in macaques can thus recapitulate developmental features of human bNAbs, thereby guiding HIV-1 immunogen design.


Assuntos
Coevolução Biológica/imunologia , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Sítios de Ligação , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Amplamente Neutralizantes/imunologia , Antígenos CD4/imunologia , Microscopia Crioeletrônica , Epitopos/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , Humanos , Macaca mulatta , Mimetismo Molecular/imunologia , Vírus da Imunodeficiência Símia/genética , Replicação Viral
18.
MAbs ; 12(1): 1836719, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33121334

RESUMO

Broadly neutralizing antibodies are showing promise in the treatment and prevention of HIV-1, with several now being evaluated clinically. Some lead clinical candidates, including antibodies CAP256-VRC26.25, N6, PGT121, and VRC07-523, have one or more N-linked glycosylation sequons in their variable domains (Fvs) from somatic hypermutation, and these glycans increase chemical heterogeneity, complicating the manufacture of these antibodies as products. Here we propose a general method to remove Fv glycans and use this method to develop engineered versions of these four antibodies with Fv glycans removed. When germline residues were introduced to remove each glycan, antibody properties between wild type and mutant were not significantly altered for CAP256-VRC26.25 and PGT121; however, germline mutants for N6 and VRC07-523 showed increased polyreactivity, which is known to correlate with unfavorable in vivo pharmacokinetics. To reduce polyreactivity induced by removal of Fv glycan, we mutated aromatic residues and arginines structurally proximal to the removed glycan and identified Fv glycan-removed variants with low polyreactivity for N6 and VRC07-523. Two such variants, N6-N72LCQ-R18LCD and VRC07-523-N72LCQ-R24LCD, showed thermostability, neutralization potency and breadth, and half-life in humanized FcRn mice that were similar to their wild-type Fv-glycosylated counterparts. The removal of Fv glycan and reduction of chemical heterogeneity were confirmed by liquid chromatography-mass spectrometry. With reduced heterogeneity, the Fv-glycan-removed variants developed here may have utility as products for treating or preventing infection by HIV-1.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1 , Região Variável de Imunoglobulina/imunologia , Animais , Glicosilação , Anticorpos Anti-HIV/química , Infecções por HIV/prevenção & controle , Humanos , Região Variável de Imunoglobulina/química , Camundongos , Polissacarídeos
19.
Nature ; 586(7830): 567-571, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32756549

RESUMO

A vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to control the coronavirus disease 2019 (COVID-19) global pandemic. Structural studies have led to the development of mutations that stabilize Betacoronavirus spike proteins in the prefusion state, improving their expression and increasing immunogenicity1. This principle has been applied to design mRNA-1273, an mRNA vaccine that encodes a SARS-CoV-2 spike protein that is stabilized in the prefusion conformation. Here we show that mRNA-1273 induces potent neutralizing antibody responses to both wild-type (D614) and D614G mutant2 SARS-CoV-2 as well as CD8+ T cell responses, and protects against SARS-CoV-2 infection in the lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a phase III trial to evaluate its efficacy.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes/imunologia , Betacoronavirus/genética , Linfócitos T CD8-Positivos/imunologia , COVID-19 , Vacinas contra COVID-19 , Ensaios Clínicos Fase III como Assunto , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Feminino , Pulmão/imunologia , Pulmão/virologia , Camundongos , Mutação , Nariz/imunologia , Nariz/virologia , Pneumonia Viral/virologia , RNA Mensageiro/genética , RNA Viral/genética , SARS-CoV-2 , Células Th1/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/imunologia , Vacinas Virais/química , Vacinas Virais/genética
20.
N Engl J Med ; 383(16): 1544-1555, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32722908

RESUMO

BACKGROUND: Vaccines to prevent coronavirus disease 2019 (Covid-19) are urgently needed. The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines on viral replication in both upper and lower airways is important to evaluate in nonhuman primates. METHODS: Nonhuman primates received 10 or 100 µg of mRNA-1273, a vaccine encoding the prefusion-stabilized spike protein of SARS-CoV-2, or no vaccine. Antibody and T-cell responses were assessed before upper- and lower-airway challenge with SARS-CoV-2. Active viral replication and viral genomes in bronchoalveolar-lavage (BAL) fluid and nasal swab specimens were assessed by polymerase chain reaction, and histopathological analysis and viral quantification were performed on lung-tissue specimens. RESULTS: The mRNA-1273 vaccine candidate induced antibody levels exceeding those in human convalescent-phase serum, with live-virus reciprocal 50% inhibitory dilution (ID50) geometric mean titers of 501 in the 10-µg dose group and 3481 in the 100-µg dose group. Vaccination induced type 1 helper T-cell (Th1)-biased CD4 T-cell responses and low or undetectable Th2 or CD8 T-cell responses. Viral replication was not detectable in BAL fluid by day 2 after challenge in seven of eight animals in both vaccinated groups. No viral replication was detectable in the nose of any of the eight animals in the 100-µg dose group by day 2 after challenge, and limited inflammation or detectable viral genome or antigen was noted in lungs of animals in either vaccine group. CONCLUSIONS: Vaccination of nonhuman primates with mRNA-1273 induced robust SARS-CoV-2 neutralizing activity, rapid protection in the upper and lower airways, and no pathologic changes in the lung. (Funded by the National Institutes of Health and others.).


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Betacoronavirus/fisiologia , Antígenos CD4 , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/patologia , Infecções por Coronavirus/terapia , Modelos Animais de Doenças , Relação Dose-Resposta Imunológica , Imunização Passiva , Pulmão/patologia , Pulmão/virologia , Macaca mulatta , Pneumonia Viral/patologia , Pneumonia Viral/terapia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Linfócitos T/imunologia , Carga Viral , Vacinas Virais/administração & dosagem , Replicação Viral , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA