Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38260622

RESUMO

Myocardial infarction (MI) in the human heart causes death of billions of cardiomyocytes (CMs), resulting in cardiac dysfunction that is incompatible with life or lifestyle. In order to re-muscularize injured myocardium, replacement CMs must be generated via renewed proliferation of surviving CMs. Approaches designed to induce proliferation of CMs after injury have been insufficient. Toward this end, we are targeting the Tip60 acetyltransferase, based on the rationale that its pleiotropic functions conspire to block the CM cell-cycle at several checkpoints. We previously reported that genetic depletion of Tip60 in a mouse model after MI reduces scarring, retains cardiac function, and activates the CM cell-cycle, although it is unclear whether this culminates in the generation of daughter CMs. For pre-existing CMs in the adult heart to resume proliferation, it is becoming widely accepted that they must first dedifferentiate, a process highlighted by loss of maturity, epithelial to mesenchymal transitioning (EMT), and reversion from fatty acid oxidation to glycolytic metabolism, accompanied by softening of the myocardial extracellular matrix. Findings in hematopoietic stem cells, and more recently in neural progenitor cells, have shown that Tip60 induces and maintains the differentiated state via site-specific acetylation of the histone variant H2A.Z. Here, we report that genetic depletion of Tip60 from naïve or infarcted hearts results in the near-complete absence of acetylated H2A.Z in CM nuclei, and that this is accordingly accompanied by altered gene expressions indicative of EMT induction, ECM softening, decreased fatty acid oxidation, and depressed expression of genes that regulate the TCA cycle. These findings, combined with our previous work, support the notion that because Tip60 has multiple targets that combinatorially maintain the differentiated state and inhibit proliferation, its transient therapeutic targeting to ameliorate the effects of cardiac injury should be considered.

2.
Am J Physiol Heart Circ Physiol ; 325(1): H149-H162, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204873

RESUMO

Patients with two congenital heart diseases (CHDs), Ebstein's anomaly (EA) and left ventricular noncompaction (LVNC), suffer higher morbidity than either CHD alone. The genetic etiology and pathogenesis of combined EA/LVNC remain largely unknown. We investigated a familial EA/LVNC case associated with a variant (p.R237C) in the gene encoding Kelch-like protein 26 (KLHL26) by differentiating induced pluripotent stem cells (iPSCs) generated from affected and unaffected family members into cardiomyocytes (iPSC-CMs) and assessing iPSC-CM morphology, function, gene expression, and protein abundance. Compared with unaffected iPSC-CMs, CMs containing the KLHL26 (p.R237C) variant exhibited aberrant morphology including distended endo(sarco)plasmic reticulum (ER/SR) and dysmorphic mitochondria and aberrant function that included decreased contractions per minute, altered calcium transients, and increased proliferation. Pathway enrichment analyses based on RNASeq data indicated that the "structural constituent of muscle" pathway was suppressed, whereas the "ER lumen" pathway was activated. Taken together, these findings suggest that iPSC-CMs containing this KLHL26 (p.R237C) variant develop dysregulated ER/SR, calcium signaling, contractility, and proliferation.NEW & NOTEWORTHY We demonstrate here that iPSCs derived from patients with Ebstein's anomaly and left ventricular noncompaction, when differentiated into cardiomyocytes, display significant structural and functional changes that offer insight into disease pathogenesis, including altered ER/SR and mitochondrial morphology, contractility, and calcium signaling.


Assuntos
Anomalia de Ebstein , Células-Tronco Pluripotentes Induzidas , Humanos , Anomalia de Ebstein/genética , Anomalia de Ebstein/metabolismo , Anomalia de Ebstein/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Diferenciação Celular , Sinalização do Cálcio
3.
J Am Heart Assoc ; 12(4): e027990, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36789856

RESUMO

Background Cardiac fibrosis complicates SARS-CoV-2 infections and has been linked to arrhythmic complications in survivors. Accordingly, we sought evidence of increased HSP47 (heat shock protein 47), a stress-inducible chaperone protein that regulates biosynthesis and secretion of procollagen in heart tissue, with the goal of elucidating molecular mechanisms underlying cardiac fibrosis in subjects with this viral infection. Methods and Results Using human autopsy tissue, immunofluorescence, and immunohistochemistry, we quantified Hsp47+ cells and collagen α 1(l) in hearts from people with SARS-CoV-2 infections. Because macrophages are also linked to inflammation, we measured CD163+ cells in the same tissues. We observed irregular groups of spindle-shaped HSP47+ and CD163+ cells as well as increased collagen α 1(I) deposition, each proximate to one another in "hot spots" of ≈40% of hearts after SARS-CoV-2 infection (HSP47+ P<0.05 versus nonfibrotics and P<0.001 versus controls). Because HSP47+ cells are consistent with myofibroblasts, subjects with hot spots are termed "profibrotic." The remaining 60% of subjects dying with COVID-19 without hot spots are referred to as "nonfibrotic." No control subject exhibited hot spots. Conclusions Colocalization of myofibroblasts, M2(CD163+) macrophages, and collagen α 1(l) may be the first evidence of a COVID-19-related "profibrotic phenotype" in human hearts in situ. The potential public health and diagnostic implications of these observations require follow-up to further define mechanisms of viral-mediated cardiac fibrosis.


Assuntos
COVID-19 , Miofibroblastos , Humanos , Miofibroblastos/metabolismo , SARS-CoV-2 , Colágeno/metabolismo , Proteínas de Choque Térmico/metabolismo , Colágeno Tipo I/metabolismo , Fenótipo , Macrófagos/metabolismo , Fibrose
4.
Dis Model Mech ; 16(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341679

RESUMO

Pharmacologic strategies that target factors with both pro-apoptotic and anti-proliferative functions in cardiomyocytes (CMs) may be useful for the treatment of ischemic heart disease. One such multifunctional candidate for drug targeting is the acetyltransferase Tip60, which is known to acetylate both histone and non-histone protein targets that have been shown in cancer cells to promote apoptosis and to initiate the DNA damage response, thereby limiting cellular expansion. Using a murine model, we recently published findings demonstrating that CM-specific disruption of the Kat5 gene encoding Tip60 markedly protects against the damaging effects of myocardial infarction (MI). In the experiments described here, in lieu of genetic targeting, we administered TH1834, an experimental drug designed to specifically inhibit the acetyltransferase domain of Tip60. We report that, similar to the effect of disrupting the Kat5 gene, daily systemic administration of TH1834 beginning 3 days after induction of MI and continuing for 2 weeks of a 4-week timeline resulted in improved systolic function, reduced apoptosis and scarring, and increased activation of the CM cell cycle, effects accompanied by reduced expression of genes that promote apoptosis and inhibit the cell cycle and reduced levels of CMs exhibiting phosphorylated Atm. These results support the possibility that drugs that inhibit the acetyltransferase activity of Tip60 may be useful agents for the treatment of ischemic heart disease.


Assuntos
Histona Acetiltransferases , Infarto do Miocárdio , Camundongos , Animais , Histona Acetiltransferases/metabolismo , Apoptose , Miócitos Cardíacos/metabolismo , Histonas/metabolismo , Infarto do Miocárdio/tratamento farmacológico
5.
Front Cell Dev Biol ; 10: 895162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518540

RESUMO

Mammalian cardiomyocyte maturation entails phenotypic and functional optimization during the late fetal and postnatal phases of heart development, both processes driven and coordinated by complex gene regulatory networks. Cardiomyocytes derived from human induced pluripotent stem cells (iPSCs) are heterogenous and immature, barely resembling their adult in vivo counterparts. To characterize relevant developmental programs and maturation states during human iPSC-cardiomyocyte differentiation, we performed single-cell transcriptomic sequencing, which revealed six cardiomyocyte subpopulations, whose heterogeneity was defined by cell cycle and maturation states. Two of those subpopulations were characterized by a mature, non-proliferative transcriptional profile. To further investigate the proliferation-maturation transition in cardiomyocytes, we induced loss-of-function of LMNB2, which represses cell cycle progression in primary cardiomyocytes in vivo. This resulted in increased maturation in LMNB2-inactivated cardiomyocytes, characterized by transcriptional profiles related to myofibril structure and energy metabolism. Furthermore, we identified maturation signatures and maturational trajectories unique for control and LMNB2-inactivated cardiomyocytes. By comparing these datasets with single-cell transcriptomes of human fetal hearts, we were able to define spatiotemporal maturation states in human iPSC-cardiomyocytes. Our results provide an integrated approach for comparing in vitro-differentiated cardiomyocytes with their in vivo counterparts and suggest a strategy to promote cardiomyocyte maturation.

6.
J Cardiovasc Dev Dis ; 9(5)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35621855

RESUMO

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease (CHD) with complex genetic inheritance. HLHS segregates with other left ventricular outflow tract (LVOT) malformations in families, and can present as either an isolated phenotype or as a feature of a larger genetic disorder. The multifactorial etiology of HLHS makes it difficult to interpret the clinical significance of genetic variants. Specific genes have been implicated in HLHS, including rare, predicted damaging MYH6 variants that are present in >10% of HLHS patients, and which have been shown to be associated with decreased transplant-free survival in our previous studies. MYH6 (α-myosin heavy chain, α-MHC) variants have been reported in HLHS and numerous other CHDs, including LVOT malformations, and may provide a genetic link to these disorders. In this paper, we outline the MYH6 variants that have been identified, discuss how bioinformatic and functional studies can inform clinical decision making, and highlight the importance of genetic testing in HLHS.

7.
J Cardiovasc Dev Dis ; 9(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35448091

RESUMO

Traditional definitions of Ebstein's anomaly (EA) and left ventricular noncompaction (LVNC), two rare congenital heart defects (CHDs), confine disease to either the right or left heart, respectively. Around 15-29% of patients with EA, which has a prevalence of 1 in 20,000 live births, commonly manifest with LVNC. While individual EA or LVNC literature is extensive, relatively little discussion is devoted to the joint appearance of EA and LVNC (EA/LVNC), which poses a higher risk of poor clinical outcomes. We queried PubMed, Medline, and Web of Science for all peer-reviewed publications from inception to February 2022 that discuss EA/LVNC and found 58 unique articles written in English. Here, we summarize and extrapolate commonalities in clinical and genetic understanding of EA/LVNC to date. We additionally postulate involvement of shared developmental pathways that may lead to this combined disease. Anatomical variation in EA/LVNC encompasses characteristics of both CHDs, including tricuspid valve displacement, right heart dilatation, and left ventricular trabeculation, and dictates clinical presentation in both age and severity. Disease treatment is non-specific, ranging from symptomatic management to invasive surgery. Apart from a few variant associations, mainly in sarcomeric genes MYH7 and TPM1, the genetic etiology and pathogenesis of EA/LVNC remain largely unknown.

8.
Am J Physiol Heart Circ Physiol ; 322(4): H579-H596, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35179974

RESUMO

During the past two decades, the field of mammalian myocardial regeneration has grown dramatically, and with this expanded interest comes increasing claims of experimental manipulations that mediate bona fide proliferation of cardiomyocytes. Too often, however, insufficient evidence or improper controls are provided to support claims that cardiomyocytes have definitively proliferated, a process that should be strictly defined as the generation of two de novo functional cardiomyocytes from one original cardiomyocyte. Throughout the literature, one finds inconsistent levels of experimental rigor applied, and frequently the specific data supplied as evidence of cardiomyocyte proliferation simply indicate cell-cycle activation or DNA synthesis, which do not necessarily lead to the generation of new cardiomyocytes. In this review, we highlight potential problems and limitations faced when characterizing cardiomyocyte proliferation in the mammalian heart, and summarize tools and experimental standards, which should be used to support claims of proliferation-based remuscularization. In the end, definitive establishment of de novo cardiomyogenesis can be difficult to prove; therefore, rigorous experimental strategies should be used for such claims.


Assuntos
Miócitos Cardíacos , Regeneração , Animais , Ciclo Celular , Proliferação de Células , Coração/fisiologia , Mamíferos , Miócitos Cardíacos/fisiologia
9.
J Mol Cell Cardiol ; 163: 9-19, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34610340

RESUMO

Injury from myocardial infarction (MI) and consequent post-MI remodeling is accompanied by massive loss of cardiomyocytes (CM), a cell type critical for contractile function that is for all practical purposes non-regenerable due to its profound state of proliferative senescence. Identification of factors that limit CM survival and/or constrain CM renewal provides potential therapeutic targets. Tip60, a pan-acetyltransferase encoded by the Kat5 gene, has been reported to activate apoptosis as well as multiple anti-proliferative pathways in non-cardiac cells; however, its role in CMs, wherein it is abundantly expressed, remains unknown. Here, using mice containing floxed Kat5 alleles and a tamoxifen-activated Myh6-MerCreMer recombinase transgene, we report that conditional depletion of Tip60 in CMs three days after MI induced by permanent coronary artery ligation greatly improves functional recovery for up to 28 days. This is accompanied by diminished scarring, activation of cell-cycle transit markers in CMs within the infarct border and remote zones, reduced expression of cell-cycle inhibitors pAtm and p27, and reduced apoptosis in the remote regions. These findings implicate Tip60 as a novel, multifactorial target for limiting the damaging effects of ischemic heart disease.


Assuntos
Acetiltransferases , Infarto do Miocárdio , Acetiltransferases/metabolismo , Acetiltransferases/farmacologia , Acetiltransferases/uso terapêutico , Animais , Apoptose/genética , Ciclo Celular , Lisina Acetiltransferase 5 , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Transativadores
10.
J Mol Cell Cardiol ; 155: 88-98, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33609538

RESUMO

Tip60, a pan-acetyltransferase encoded by the Kat5 gene, is enriched in the myocardium; however, its function in the heart is unknown. In cancer cells, Tip60 acetylates Atm (Ataxia-telangiectasia mutated), enabling its auto-phosphorylation (pAtm), which activates the DNA damage response (DDR). It was recently reported that activation of pAtm at the time of birth induces the DDR in cardiomyocytes (CMs), resulting in proliferative senescence. We therefore hypothesized that Tip60 initiates this process, and that depletion of Tip60 accordingly diminishes the DDR while extending the duration of CM cell-cycle activation. To test this hypothesis, an experimental model was used wherein a Myh6-driven Cre-recombinase transgene was activated on postnatal day 0 (P0) to recombine floxed Kat5 alleles and induce Tip60 depletion in neonatal CMs, without causing pathogenesis. Depletion of Tip60 resulted in reduced numbers of pAtm-positive CMs during the neonatal period, which correlated with reduced numbers of pH2A.X-positive CMs and decreased expression of genes encoding markers of the DDR as well as inflammation. This was accompanied by decreased expression of the cell-cycle inhibitors Meis1 and p27, activation of the cell-cycle in CMs, reduced CM size, and increased numbers of mononuclear/diploid CMs. Increased expression of fetal markers suggested that Tip60 depletion promotes a fetal-like proliferative state. Finally, infarction of Tip60-depleted hearts at P7 revealed improved cardiac function at P39 accompanied by reduced fibrosis, increased CM cell-cycle activation, and reduced apoptosis in the remote zone. These findings indicate that, among its pleiotropic functions, Tip60 induces the DDR in CMs, contributing to proliferative senescence.


Assuntos
Pontos de Checagem do Ciclo Celular , Dano ao DNA , Lisina Acetiltransferase 5/metabolismo , Miócitos Cardíacos/metabolismo , Transativadores/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/genética , Biomarcadores , Modelos Animais de Doenças , Ecocardiografia , Expressão Gênica , Imuno-Histoquímica , Lisina Acetiltransferase 5/genética , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Ploidias , Transativadores/genética , Cicatrização
11.
Dis Model Mech ; 13(12)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33106234

RESUMO

Regeneration of muscle in the damaged myocardium is a major objective of cardiovascular research, for which purpose many investigators utilize mice containing transgenes encoding Cre recombinase to recombine loxP-flanked target genes. An unfortunate side effect of the Cre-loxP model is the propensity of Cre recombinase to inflict off-target DNA damage, which has been documented in various eukaryotic cell types including cardiomyocytes (CMs). In the heart, reported effects of Cre recombinase include contractile dysfunction, fibrosis, cellular infiltration and induction of the DNA damage response (DDR). During experiments on adult mice containing a widely used Myh6-merCremer transgene, the protein product of which is activated by tamoxifen, we observed large, transient, off-target effects of merCremer, some of which have not previously been reported. On Day 3 after the first of three daily tamoxifen injections, immunofluorescent microscopy of heart sections revealed that the presence of merCremer protein in myonuclei was nearly uniform, thereafter diminishing to near extinction by Day 6; during this time, cardiac function was depressed as determined by echocardiography. On Day 5, peaks of apoptosis and expression of DDR-regulatory genes were observed, highlighted by >25-fold increased expression of Brca1 Concomitantly, the expression of genes encoding cyclin-A2, cyclin-B2 and cyclin-dependent kinase 1, which regulate the G2/S cell-cycle transition, were dramatically increased (>50- to 100-fold). Importantly, immunofluorescent staining revealed that this was accompanied by peaks in Ki67, 5'-bromodeoxyuridine and phosphohistone H3 labeling in non-CMs, as well as CMs. We further document that tamoxifen-induced activation of merCremer exacerbates cardiac dysfunction following myocardial infarction. These findings, when considered in the context of previous reports, indicate that the presence of merCremer in the nucleus induces DNA damage and unscheduled cell-cycle activation. Although these effects are transient, the inclusion of appropriate controls, coupled with an awareness of the defects caused by Cre recombinase, are required to avoid misinterpreting results when using Cre-loxP models for cardiac regeneration studies.This article has an associated First Person interview with the first author of the paper.


Assuntos
Ciclo Celular , Dano ao DNA , Integrases/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Cadeias Pesadas de Miosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Reparo do DNA/efeitos dos fármacos , Eletrocardiografia , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tamoxifeno/farmacologia
12.
Front Cell Dev Biol ; 8: 440, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32656206

RESUMO

Hypoplastic left heart syndrome (HLHS) is a clinically and anatomically severe form of congenital heart disease; however, its etiology remains largely unknown. We previously demonstrated that genetic variants in the MYH6 gene are significantly associated with HLHS. Additionally, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from an HLHS-affected family trio (affected parent, unaffected parent, affected proband) carrying an MYH6-R443P head domain variant demonstrated dysmorphic sarcomere structure and increased compensatory MYH7 expression. Analysis of iPSC-CMs derived from the HLHS trio revealed that only beta myosin heavy chain expression was observed in CMs carrying the MYH6-R443P variant after differentiation day 15 (D15). Functional assessments performed between D20-D23 revealed that MYH6-R443P variant CMs contracted more slowly (40 ± 2 vs. 47 ± 2 contractions/min, P < 0.05), shortened less (5.6 ± 0.5 vs. 8.1 ± 0.7% of cell length, P < 0.05), and exhibited slower shortening rates (19.9 ± 1.7 vs. 28.1 ± 2.5 µm/s, P < 0.05) and relaxation rates (11.0 ± 0.9 vs. 19.7 ± 2.0 µm/s, P < 0.05). Treatment with isoproterenol had no effect on iPSC-CM mechanics. Using CRISPR/Cas9 gene editing technology, introduction of the R443P variant into the unaffected parent's iPSCs recapitulated the phenotype of the proband's iPSC-CMs, and conversely, correction of the R443P variant in the proband's iPSCs rescued the cardiomyogenic differentiation, sarcomere organization, slower contraction (P < 0.05) and decreased velocity phenotypes (P < 0.0001). This is the first report to identify that cardiac tissues from HLHS patients with MYH6 variants can exhibit sarcomere disorganization in atrial but not ventricular tissues. This new discovery was not unexpected, since MYH6 is expressed predominantly in the postnatal atria in humans. These findings demonstrate the feasibility of employing patient-derived iPSC-CMs, in combination with patient cardiac tissues, to gain mechanistic insight into how genetic variants can lead to HLHS. Results from this study suggest that decreased contractility of CMs due to sarcomere disorganization in the atria may effect hemodynamic changes preventing development of a normal left ventricle.

13.
Blood ; 136(15): 1735-1747, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32542325

RESUMO

Hematopoietic stem cells (HSCs) have the potential to replenish the blood system for the lifetime of the organism. Their 2 defining properties, self-renewal and differentiation, are tightly regulated by the epigenetic machineries. Using conditional gene-knockout models, we demonstrated a critical requirement of lysine acetyltransferase 5 (Kat5, also known as Tip60) for murine HSC maintenance in both the embryonic and adult stages, which depends on its acetyltransferase activity. Genome-wide chromatin and transcriptome profiling in murine hematopoietic stem and progenitor cells revealed that Tip60 colocalizes with c-Myc and that Tip60 deletion suppress the expression of Myc target genes, which are associated with critical biological processes for HSC maintenance, cell cycling, and DNA repair. Notably, acetylated H2A.Z (acH2A.Z) was enriched at the Tip60-bound active chromatin, and Tip60 deletion induced a robust reduction in the acH2A.Z/H2A.Z ratio. These results uncover a critical epigenetic regulatory layer for HSC maintenance, at least in part through Tip60-dependent H2A.Z acetylation to activate Myc target genes.


Assuntos
Autorrenovação Celular/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Lisina Acetiltransferase 5/genética , Transativadores/genética , Animais , Biomarcadores , Ciclo Celular , Diferenciação Celular/genética , Dano ao DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histonas/metabolismo , Lisina Acetiltransferase 5/metabolismo , Camundongos , Transporte Proteico , Transativadores/metabolismo
14.
PLoS One ; 11(10): e0164855, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27768769

RESUMO

Tat-interactive protein 60 (Tip60), encoded by the Kat5 gene, is a member of the MYST family of acetyltransferases. Cancer biology studies have shown that Tip60 induces the DNA damage response, apoptosis, and cell-cycle inhibition. Although Tip60 is expressed in the myocardium, its role in cardiomyocytes (CMs) is unclear. Earlier studies here showed that application of cardiac stress to globally targeted Kat5+/-haploinsufficient mice resulted in inhibition of apoptosis and activation of the CM cell-cycle, despite only modest reduction of Tip60 protein levels. It was therefore of interest to ascertain the effects of specifically and substantially depleting Tip60 from CMs using Kat5LoxP/-;Myh6-Cre mice in the absence of stress. We report initial findings using this model, in which the effects of specifically depleting Tip60 protein from ventricular CMs, beginning at early neonatal stages, were assessed in 2-12 week-old mice. Although 5'-bromodeoxyuridine immunostaining indicated that CM proliferation was not altered at any of these stages, CM density was increased in 2 week-old ventricles, which persisted in 4 week-old hearts when TUNEL staining revealed inhibition of apoptosis. By week 4, levels of connexin-43 were depleted, and its patterning was dysmorphic, concomitant with an increase in cardiac hypertrophy marker expression and interstitial fibrosis. This was followed by systolic dysfunction at 8 weeks, after which extensive apoptosis and CM fallout occurred, followed by lethality as mice approached 12 weeks of age. In summary, chronic depletion of Tip60 from the ventricular myocardium beginning at early stages of neonatal heart development causes CM death after 8 weeks; hence, Tip60 protein has a crucial function in the heart.


Assuntos
Coração/fisiopatologia , Histona Acetiltransferases/fisiologia , Miócitos Cardíacos/metabolismo , Transativadores/fisiologia , Alelos , Animais , Lisina Acetiltransferase 5 , Camundongos , Camundongos Transgênicos
15.
Physiol Genomics ; 48(12): 912-921, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27789736

RESUMO

Hypoplastic left heart syndrome (HLHS) is a clinically and anatomically severe form of congenital heart disease (CHD). Although prior studies suggest that HLHS has a complex genetic inheritance, its etiology remains largely unknown. The goal of this study was to characterize a risk gene in HLHS and its effect on HLHS etiology and outcome. We performed next-generation sequencing on a multigenerational family with a high prevalence of CHD/HLHS, identifying a rare variant in the α-myosin heavy chain (MYH6) gene. A case-control study of 190 unrelated HLHS subjects was then performed and compared with the 1000 Genomes Project. Damaging MYH6 variants, including novel, missense, in-frame deletion, premature stop, de novo, and compound heterozygous variants, were significantly enriched in HLHS cases (P < 1 × 10-5). Clinical outcomes analysis showed reduced transplant-free survival in HLHS subjects with damaging MYH6 variants (P < 1 × 10-2). Transcriptome and protein expression analyses with cardiac tissue revealed differential expression of cardiac contractility genes, notably upregulation of the ß-myosin heavy chain (MYH7) gene in subjects with MYH6 variants (P < 1 × 10-3). We subsequently used patient-specific induced pluripotent stem cells (iPSCs) to model HLHS in vitro. Early stages of in vitro cardiomyogenesis in iPSCs derived from two unrelated HLHS families mimicked the increased expression of MYH7 observed in vivo (P < 1 × 10-2), while revealing defective cardiomyogenic differentiation. Rare, damaging variants in MYH6 are enriched in HLHS, affect molecular expression of contractility genes, and are predictive of poor outcome. These findings indicate that the etiology of MYH6-associated HLHS can be informed using iPSCs and suggest utility in future clinical applications.


Assuntos
Miosinas Cardíacas/genética , Síndrome do Coração Esquerdo Hipoplásico/genética , Mutação/genética , Cadeias Pesadas de Miosina/genética , Adolescente , Estudos de Casos e Controles , Diferenciação Celular/genética , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Miócitos Cardíacos/fisiologia , Linhagem , Transcriptoma/genética , Regulação para Cima/genética
16.
PLoS One ; 10(2): e0118670, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706534

RESUMO

The use of human pluripotent cell progeny for cardiac disease modeling, drug testing and therapeutics requires the ability to efficiently induce pluripotent cells into the cardiomyogenic lineage. Although direct activation of the Activin-A and/or Bmp pathways with growth factors yields context-dependent success, recent studies have shown that induction of Wnt signaling using low molecular weight molecules such as CHIR, which in turn induces the Activin-A and Bmp pathways, is widely effective. To further enhance the reproducibility of CHIR-induced cardiomyogenesis, and to ultimately promote myocyte maturation, we are using exogenous growth factors to optimize cardiomyogenic signaling downstream of CHIR induction. As indicated by RNA-seq, induction with CHIR during Day 1 (Days 0-1) was followed by immediate expression of Nodal ligands and receptors, followed later by Bmp ligands and receptors. Co-induction with CHIR and high levels of the Nodal mimetic Activin-A (50-100 ng/ml) during Day 0-1 efficiently induced definitive endoderm, whereas CHIR supplemented with Activin-A at low levels (10 ng/ml) consistently improved cardiomyogenic efficiency, even when CHIR alone was ineffective. Moreover, co-induction using CHIR and low levels of Activin-A apparently increased the rate of cardiomyogenesis, as indicated by the initial appearance of rhythmically beating cells by Day 6 instead of Day 8. By contrast, co-induction with CHIR plus low levels (3-10 ng/ml) of Bmp4 during Day 0-1 consistently and strongly inhibited cardiomyogenesis. These findings, which demonstrate that cardiomyogenic efficacy is improved by optimizing levels of CHIR-induced growth factors when applied in accord with their sequence of endogenous expression, are consistent with the idea that Nodal (Activin-A) levels toggle the entry of cells into the endodermal or mesodermal lineages, while Bmp levels regulate subsequent allocation into mesodermal cell types.


Assuntos
Ativinas/fisiologia , Proteína Morfogenética Óssea 4/fisiologia , Células-Tronco Embrionárias/citologia , Miócitos Cardíacos/citologia , Diferenciação Celular , Humanos , Análise de Sequência de RNA
18.
Cell Rep ; 7(5): 1471-1480, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24835996

RESUMO

The human FOXP3 molecule is an oligomeric transcriptional factor able to mediate activities that characterize T regulatory cells, a class of lymphocytes central to the regulation of immune responses. The activity of FOXP3 is regulated at the posttranslational level, in part by two histone acetyltransferases (HATs): TIP60 and p300. TIP60 and p300 work cooperatively to regulate FOXP3 activity. Initially, p300 and TIP60 interactions lead to the activation of TIP60 and facilitate acetylation of K327 of TIP60, which functions as a molecular switch to allow TIP60 to change binding partners. Subsequently, p300 is released from this complex, and TIP60 interacts with and acetylates FOXP3. Maximal induction of FOXP3 activities is observed when both p300 and TIP60 are able to undergo cooperative interactions. Conditional knockout of TIP60 in Treg cells significantly decreases the Treg population in the peripheral immune organs, leading to a scurfy-like fatal autoimmune disease.


Assuntos
Proteína p300 Associada a E1A/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Histona Acetiltransferases/metabolismo , Transativadores/metabolismo , Sequência de Aminoácidos , Animais , Doenças Autoimunes/metabolismo , Proteína p300 Associada a E1A/genética , Fatores de Transcrição Forkhead/genética , Células HEK293 , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Humanos , Lisina/metabolismo , Lisina Acetiltransferase 5 , Camundongos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Linfócitos T Reguladores/metabolismo , Transativadores/química , Transativadores/genética
19.
PLoS One ; 9(5): e98343, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24870614

RESUMO

Adipose tissue is a key regulator of energy homestasis. The amount of adipose tissue is largely determined by adipocyte differentiation (adipogenesis), a process that is regulated by the concerted actions of multiple transcription factors and cofactors. Based on in vitro studies in murine 3T3-L1 preadipocytes and human primary preadipocytes, the transcriptional cofactor and acetyltransferase Tip60 was recently identified as an essential adipogenic factor. We therefore investigated the role of Tip60 on adipocyte differentiation and function, and possible consequences on energy homeostasis, in vivo. Because homozygous inactivation results in early embryonic lethality, Tip60+/- mice were used. Heterozygous inactivation of Tip60 had no effect on body weight, despite slightly higher food intake by Tip60+/- mice. No major effects of heterozygous inactivation of Tip60 were observed on adipose tissue and liver, and Tip60+/- displayed normal glucose tolerance, both on a low fat and a high fat diet. While Tip60 mRNA was reduced to 50% in adipose tissue, the protein levels were unaltered, suggesting compensation by the intact allele. These findings indicate that the in vivo role of Tip60 in adipocyte differentiation and function cannot be properly addressed in Tip60+/- mice, but requires the generation of adipose tissue-specific knock out animals or specific knock-in mice.


Assuntos
Tecido Adiposo Branco/fisiologia , Mecanismo Genético de Compensação de Dose/genética , Metabolismo Energético/fisiologia , Histona Acetiltransferases/genética , Homeostase/fisiologia , Transativadores/genética , Células 3T3-L1 , Adipócitos/fisiologia , Animais , Western Blotting , Diferenciação Celular/genética , Primers do DNA/genética , Metabolismo Energético/genética , Células HEK293 , Homeostase/genética , Humanos , Imuno-Histoquímica , Fígado/metabolismo , Lisina Acetiltransferase 5 , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase
20.
Hum Mol Genet ; 23(8): 2120-31, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24287617

RESUMO

Cancer progression is associated with epigenetic alterations, such as changes in DNA methylation, histone modifications or variants incorporation. The p400 ATPase, which can incorporate the H2A.Z variant, and the Tip60 histone acetyltransferase are interacting chromatin-modifying proteins crucial for the control of cell proliferation. We demonstrate here that Tip60 acts as a tumor suppressor in colon, since mice heterozygous for Tip60 are more susceptible to chemically induced preneoplastic lesions and adenomas. Strikingly, heterozygosity for p400 reverses the Tip60-dependent formation of preneoplastic lesions, uncovering for the first time pro-oncogenic functions for p400. By genome-wide analysis and using a specific inhibitor in vivo, we demonstrated that these effects are dependent on Wnt signaling which is antagonistically impacted by p400 and Tip60: p400 directly favors the expression of a subset of Wnt-target genes and regulators, whereas Tip60 prevents ß-catenin acetylation and activation. Taken together, our data underline the physiopathological importance of interplays between chromatin-modifying enzymes in the control of cancer-related signaling pathways.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Histona Acetiltransferases/fisiologia , Histonas/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Transativadores/fisiologia , Proteínas Wnt/metabolismo , Acetilação , Animais , Western Blotting , Células Cultivadas , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Neoplasias do Colo/genética , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Histona Acetiltransferases/metabolismo , Lisina Acetiltransferase 5 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Wnt/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA