Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29891607

RESUMO

The efficacy of cefazolin with high-inoculum methicillin-susceptible Staphylococcus aureus (MSSA) infections remains in question due to therapeutic failure inferred as being due to an inoculum effect (InE). This study investigated the local prevalence of a cefazolin InE (CInE) and its association with staphylococcal blaZ gene types among MSSA isolates in the Chicago area. Four medical centers in Chicago, IL, contributed MSSA isolates. Cefazolin MICs (C-MIC) were determined at 24 h by the broth microdilution method using a standard inoculum (SI; 5 × 105 CFU/ml) and a high inoculum (HI; 5 × 107 CFU/ml). The CInE was defined as (i) a ≥4-fold increase in C-MIC between SI and HI and/or (ii) a pronounced CInE, i.e., a nonsusceptible C-MIC of ≥16 µg/ml at HI. PCR was used to amplify the blaZ gene, followed by agarose gel electrophoresis and sequencing to determine the gene type. Approximately 269 MSSA isolates were included. All but one isolate were susceptible to cefazolin at SI, and 97% remained susceptible at HI. A total of 196 isolates (73%) were blaZ positive, with the blaZ types led by gene type C (40%). CInE was seen in 45 blaZ-positive isolates (23%), with 44 (22%) presenting a ≥4-fold increase in C-MIC (SI to HI) and 5 (3%) a pronounced CInE. Four of the five met both definitions of CInE, two of which expressed the type A gene. The prevalence of a pronounced CInE associated with the type A blaZ gene from MSSA isolates in Chicago is low. Our predilection for cefazolin use, even early in the management of hospitalized MSSA infections, is tenable.


Assuntos
Antibacterianos/uso terapêutico , Cefazolina/uso terapêutico , Genes Bacterianos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Centros Médicos Acadêmicos , Carga Bacteriana , Chicago/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Prevalência , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/isolamento & purificação
2.
J Bacteriol ; 196(21): 3756-67, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25157076

RESUMO

Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that is highly resistant to lysozyme, a ubiquitous enzyme of the innate immune system that degrades cell wall peptidoglycan. Two peptidoglycan-modifying enzymes, PgdA and OatA, confer lysozyme resistance on L. monocytogenes; however, these enzymes are also conserved among lysozyme-sensitive nonpathogens. We sought to identify additional factors responsible for lysozyme resistance in L. monocytogenes. A forward genetic screen for lysozyme-sensitive mutants led to the identification of 174 transposon insertion mutations that mapped to 13 individual genes. Four mutants were killed exclusively by lysozyme and not other cell wall-targeting molecules, including the peptidoglycan deacetylase encoded by pgdA, the putative carboxypeptidase encoded by pbpX, the orphan response regulator encoded by degU, and the highly abundant noncoding RNA encoded by rli31. Both degU and rli31 mutants had reduced expression of pbpX and pgdA, yet DegU and Rli31 did not regulate each other. Since pbpX and pgdA are also present in lysozyme-sensitive bacteria, this suggested that the acquisition of novel enzymes was not responsible for lysozyme resistance, but rather, the regulation of conserved enzymes by DegU and Rli31 conferred high lysozyme resistance. Each lysozyme-sensitive mutant exhibited attenuated virulence in mice, and a time course of infection revealed that the most lysozyme-sensitive strain was killed within 30 min of intravenous infection, a phenotype that was recapitulated in purified blood. Collectively, these data indicate that the genes required for lysozyme resistance are highly upregulated determinants of L. monocytogenes pathogenesis that are required for avoiding the enzymatic activity of lysozyme in the blood.


Assuntos
Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Listeria monocytogenes/enzimologia , Muramidase/metabolismo , Amidoidrolases/metabolismo , Animais , Antibacterianos/farmacologia , Carboxipeptidases/metabolismo , Listeria monocytogenes/citologia , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Mutagênese Insercional , Peptidoglicano/metabolismo , Virulência , beta-Lactamas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA