Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 16(3): 426-436, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38093093

RESUMO

The appeal of catalytic click chemistry is largely due to the copper-catalysed azide-alkyne cycloaddition (CuAAC) process, which is orthogonal to the more recently introduced sulfur-fluoride exchange (SuFEx). However, the triazole rings generated by CuAAC are not readily modifiable, and SuFEx connectors cannot be selectively functionalized, attributes that would be attractive in a click process. Here we introduce bisphosphine-copper-catalysed phenoxydiazaborinine formation (CuPDF), a link-and-in situ modify strategy for merging a nitrile, an allene, a diborane and a hydrazine. We also present copper- and palladium-catalysed quinoline formation (Cu/PdQNF), which is applicable in aqueous media, involving an aniline as the modifier. CuPDF and Cu/PdQNF are easy to perform and deliver robust, alterable and tunable fluorescent hubs. CuPDF and Cu/PdQNF are orthogonal to SuFEx and CuAAC, despite the latter and CuPDF also being catalysed by an organocopper species. These advantages were applied to protecting group-free syntheses of sequence-defined branched oligomers, a chemoselectively amendable polymer, three drug conjugates and a two-drug conjugate.

2.
Nat Chem ; 14(6): 640-649, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35577918

RESUMO

Many therapeutic agents are macrocyclic trisubstituted alkenes but preparation of these structures is typically inefficient and non-selective. A possible solution would entail catalytic macrocyclic ring-closing metathesis, but these transformations require high catalyst loading, conformationally rigid precursors and are often low yielding and/or non-stereoselective. Here we introduce a ring-closing metathesis strategy for synthesis of trisubstituted macrocyclic olefins in either stereoisomeric form, regardless of the level of entropic assistance. The goal was achieved by addressing several unexpected difficulties, including complications arising from pre-ring-closing metathesis alkene isomerization. The power of the method is highlighted by two examples. The first is the near-complete reversal of substrate-controlled selectivity in the formation of a macrolactam related to an antifungal natural product. The other is a late-stage stereoselective generation of an E-trisubstituted alkene in a 24-membered ring, en route to the cytotoxic natural product dolabelide C.


Assuntos
Alcenos , Produtos Biológicos , Alcenos/química , Produtos Biológicos/química , Catálise , Ciclização , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA