Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Res ; 57(1): 23, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705984

RESUMO

Obesity, associated with the intake of a high-fat diet (HFD), and anxiety are common among those living in modern urban societies. Recent studies suggest a role of microbiome-gut-brain axis signaling, including a role for brain serotonergic systems in the relationship between HFD and anxiety. Evidence suggests the gut microbiome and the serotonergic brain system together may play an important role in this response. Here we conducted a nine-week HFD protocol in male rats, followed by an analysis of the gut microbiome diversity and community composition, brainstem serotonergic gene expression (tph2, htr1a, and slc6a4), and anxiety-related defensive behavioral responses. We show that HFD intake decreased alpha diversity and altered the community composition of the gut microbiome in association with obesity, increased brainstem tph2, htr1a and slc6a4 mRNA expression, including in the caudal part of the dorsomedial dorsal raphe nucleus (cDRD), a subregion previously associated with stress- and anxiety-related behavioral responses, and, finally, increased anxiety-related defensive behavioral responses. The HFD increased the Firmicutes/Bacteroidetes ratio relative to control diet, as well as higher relative abundances of Blautia, and decreases in Prevotella. We found that tph2, htr1a and slc6a4 mRNA expression were increased in subregions of the dorsal raphe nucleus in the HFD, relative to control diet. Specific bacterial taxa were associated with increased serotonergic gene expression in the cDRD. Thus, we propose that HFD-induced obesity is associated with altered microbiome-gut-serotonergic brain axis signaling, leading to increased anxiety-related defensive behavioral responses in rats.


Assuntos
Ansiedade , Eixo Encéfalo-Intestino , Dieta Hiperlipídica , Microbioma Gastrointestinal , Animais , Masculino , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Ansiedade/microbiologia , Eixo Encéfalo-Intestino/fisiologia , Ratos , Ratos Sprague-Dawley , Obesidade/microbiologia , Obesidade/psicologia , Obesidade/metabolismo , Transdução de Sinais/fisiologia , Comportamento Animal/fisiologia
2.
Brain Behav Immun ; 91: 212-229, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33011306

RESUMO

Stress-related disorders, such as posttraumatic stress disorder (PTSD), are highly prevalent and often difficult to treat. In rodents, stress-related, anxiety-like defensive behavioral responses may be characterized by social avoidance, exacerbated inflammation, and altered metabolic states. We have previously shown that, in rodents, subcutaneous injections of a heat-killed preparation of the soil-derived bacterium Mycobacterium vaccae NCTC 11659 promotes stress resilience effects that are associated with immunoregulatory signaling in the periphery and the brain. In the current study, we sought to determine whether treatment with a heat-killed preparation of the closely related M. vaccae type strain, M. vaccae ATCC 15483, would also promote stress-resilience in adult male rats, likely due to biologically similar characteristics of the two strains. Here we show that immunization with either M. vaccae NCTC 11659 or M. vaccae ATCC 15483 prevents stress-induced increases in hippocampal interleukin 6 mRNA expression, consistent with previous studies showing that M. vaccae NCTC 11659 prevents stress-induced increases in peripheral IL-6 secretion, and prevents exaggeration of anxiety-like defensive behavioral responses assessed 24 h after exposure to inescapable tail shock stress (IS) in adult male rats. Analysis of mRNA expression, protein abundance, and flow cytometry data demonstrate overlapping but also unique effects of treatment with the two M. vaccae strains on immunological and metabolic signaling in the host. These data support the hypothesis that treatment with different M. vaccae strains may immunize the host against stress-induced dysregulation of physiology and behavior.


Assuntos
Mycobacteriaceae , Mycobacterium , Animais , Ansiedade , Lipídeos , Masculino , Ratos
3.
J Alzheimers Dis ; 78(3): 965-987, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33074227

RESUMO

BACKGROUND: Alzheimer's disease (AD) is an inflammatory neurodegenerative disease that may be associated with prior bacterial infections. Microbial "old friends" can suppress exaggerated inflammation in response to disease-causing infections or increase clearance of pathogens such as Mycobacterium tuberculosis, which causes tuberculosis (TB). One such "old friend" is Mycobacterium vaccae NCTC 11659, a soil-derived bacterium that has been proposed either as a vaccine for prevention of TB, or as immunotherapy for the treatment of TB when used alongside first line anti-TB drug treatment. OBJECTIVE: The goal of this study was to use a hypothesis generating approach to explore the effects of M. vaccae on physiological changes in the plasma and cerebrospinal fluid (CSF). METHODS: Liquid chromatography-tandem mass spectrometry-based proteomics were performed in plasma and CSF of adult male rats after immunization with a heat-killed preparation of M. vaccae NCTC 11659 or borate-buffered saline vehicle. Gene enrichment analysis and analysis of protein-protein interactions were performed to integrate physiological network changes in plasma and CSF. We used RT-qPCR to assess immune and metabolic gene expression changes in the hippocampus. RESULTS: In both plasma and CSF, immunization with M. vaccae increased proteins associated with immune activation and downregulated proteins corresponding to lipid (including phospholipid and cholesterol) metabolism. Immunization with M. vaccae also increased hippocampal expression of interleukin-4 (IL-4) mRNA, implicating anti-inflammatory effects in the central nervous system. CONCLUSION: M. vaccae alters host immune activity and lipid metabolism. These data are consistent with the hypothesis that microbe-host interactions may protect against possible infection-induced, inflammation-related cognitive impairments.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteínas do Líquido Cefalorraquidiano/metabolismo , Hipocampo/imunologia , Interleucina-4/imunologia , Metabolismo dos Lipídeos/imunologia , Mycobacteriaceae/imunologia , Proteômica , Vacinação , Doença de Alzheimer/imunologia , Animais , Hipocampo/metabolismo , Interleucina-4/genética , Proteínas , RNA Mensageiro/metabolismo , Ratos
4.
Brain Behav Immun ; 88: 763-780, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32442471

RESUMO

Autism spectrum disorders (ASDs) and epilepsy are often comorbid. The basis for this co-occurrence remains unknown; however, inflammatory stressors during development are a shared risk factor. To explore this association, we tested the effect of repeated immunizations using a heat-killed preparation of the stress-protective immunoregulatory microbe Mycobacterium vaccae NCTC 11,659 (M. vaccae) on the behavioral and epileptogenic consequences of the combined stress-terbutaline (ST) rat model of ASD-like behavior/epilepsy. Repeated immunization of the dam with M. vaccae during pregnancy, followed by immunization of the pups after terbutaline injections, prevented the expression of ASD-like behavior but did not appear to protect against, and may have even enhanced, the spontaneous epileptogenic effects of ST. Maternal M. vaccae injections transferred an anti-inflammatory immunophenotype to offspring, and repeated injections across development prevented ST-induced increases in microglial density at early developmental time points in a region-specific manner. Despite epidemiological comorbidity between ASD/epileptic conditions and shared environmental risk factors, our results suggest that the expression of ASD-like behaviors, but perhaps not epileptogenesis, is sensitive to early anti-inflammatory intervention. These data provide support for the exploration of immunoregulatory strategies to prevent the negative neurodevelopmental behavioral effects of stressors during early critical periods.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Mycobacterium , Animais , Feminino , Temperatura Alta , Imunização , Mycobacteriaceae , Mycobacterium/imunologia , Gravidez , Ratos
5.
Front Physiol ; 11: 524833, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469429

RESUMO

Previous studies demonstrate that Mycobacterium vaccae NCTC 11659 (M. vaccae), a soil-derived bacterium with anti-inflammatory and immunoregulatory properties, is a potentially useful countermeasure against negative outcomes to stressors. Here we used male C57BL/6NCrl mice to determine if repeated immunization with M. vaccae is an effective countermeasure in a "two hit" stress exposure model of chronic disruption of rhythms (CDR) followed by acute social defeat (SD). On day -28, mice received implants of biotelemetric recording devices to monitor 24-h rhythms of locomotor activity. Mice were subsequently treated with a heat-killed preparation of M. vaccae (0.1 mg, administered subcutaneously on days -21, -14, -7, and 27) or borate-buffered saline vehicle. Mice were then exposed to 8 consecutive weeks of either stable normal 12:12 h light:dark (LD) conditions or CDR, consisting of 12-h reversals of the LD cycle every 7 days (days 0-56). Finally, mice were exposed to either a 10-min SD or a home cage control condition on day 54. All mice were exposed to object location memory testing 24 h following SD. The gut microbiome and metabolome were assessed in fecal samples collected on days -1, 48, and 62 using 16S rRNA gene sequence and LC-MS/MS spectral data, respectively; the plasma metabolome was additionally measured on day 64. Among mice exposed to normal LD conditions, immunization with M. vaccae induced a shift toward a more proactive behavioral coping response to SD as measured by increases in scouting and avoiding an approaching male CD-1 aggressor, and decreases in submissive upright defensive postures. In the object location memory test, exposure to SD increased cognitive function in CDR mice previously immunized with M. vaccae. Immunization with M. vaccae stabilized the gut microbiome, attenuating CDR-induced reductions in alpha diversity and decreasing within-group measures of beta diversity. Immunization with M. vaccae also increased the relative abundance of 1-heptadecanoyl-sn-glycero-3-phosphocholine, a lysophospholipid, in plasma. Together, these data support the hypothesis that immunization with M. vaccae stabilizes the gut microbiome, induces a shift toward a more proactive response to stress exposure, and promotes stress resilience.

6.
Behav Brain Res ; 373: 112086, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31319134

RESUMO

Previous studies have highlighted interactions between serotonergic systems and adverse early life experience as important gene x environment determinants of risk of stress-related psychiatric disorders. Evidence suggests that mice deficient in Tph2, the rate-limiting enzyme for brain serotonin synthesis, display disruptions in behavioral phenotypes relevant to stress-related psychiatric disorders. The aim of this study was to determine how maternal separation in wild-type, heterozygous, and Tph2 knockout mice affects mRNA expression of serotonin-related genes. Serotonergic genes studied included Tph2, the high-affinity, low-capacity, sodium-dependent serotonin transporter (Slc6a4), the serotonin type 1a receptor (Htr1a), and the corticosterone-sensitive, low-affinity, high-capacity sodium-independent serotonin transporter, organic cation transporter 3 (Slc22a3). Furthermore, we studied corticotropin-releasing hormone receptors 1 (Crhr1) and 2 (Crhr2), which play important roles in controlling serotonergic neuronal activity. For this study, offspring of Tph2 heterozygous dams were exposed to daily maternal separation for the first two weeks of life. Adult, male wild-type, heterozygous, and homozygous offspring were subsequently used for molecular analysis. Maternal separation differentially altered serotonergic gene expression in a genotype- and topographically-specific manner. For example, maternal separation increased Slc6a4 mRNA expression in the dorsal part of the dorsal raphe nucleus in Tph2 heterozygous mice, but not in wild-type or knockout mice. Overall, these data are consistent with the hypothesis that gene x environment interactions, including serotonergic genes and adverse early life experience, play an important role in vulnerability to stress-related psychiatric disorders.


Assuntos
Núcleos da Rafe/fisiopatologia , Estresse Psicológico/metabolismo , Triptofano Hidroxilase/metabolismo , Animais , Corticosterona/metabolismo , Núcleo Dorsal da Rafe/efeitos dos fármacos , Feminino , Masculino , Privação Materna , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/fisiologia
7.
Brain Behav Immun ; 81: 151-160, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31175996

RESUMO

The hygiene hypothesis or "Old Friends" hypothesis proposes that inflammatory diseases are increasing in modern urban societies, due in part to reduced exposure to microorganisms that drive immunoregulatory circuits and a failure to terminate inappropriate inflammatory responses. Inappropriate inflammation is also emerging as a risk factor for anxiety disorders, affective disorders, and trauma-and stressor-related disorders, including posttraumatic stress disorder (PTSD), which is characterized as persistent re-experiencing of the trauma after a traumatic experience. Traumatic experiences can lead to long-lasting fear memories and fear potentiation of the acoustic startle reflex. The acoustic startle reflex is an ethologically relevant reflex and can be potentiated in both humans and rats through Pavlovian conditioning. Mycobacterium vaccae is a soil-derived bacterium with immunoregulatory and anti-inflammatory properties that has been demonstrated to enhance fear extinction in the fear-potentiated startle paradigm when given prior to fear conditioning. To determine if immunization with M. vaccae after fear conditioning also has protective effects, adult male Sprague Dawley rats underwent fear conditioning on days -37 and -36 followed by immunizations (3x), once per week beginning 24 h following fear conditioning, with a heat-killed preparation of M. vaccae NCTC 11659 (0.1 mg, s.c., in 100 µl borate-buffered saline) or vehicle, and, then, 3 weeks following the final immunization, were tested in the fear-potentiated startle paradigm (n = 12 per group). Rats underwent fear extinction training on days 1 through 6 followed by spontaneous recovery 14 days later (day 20). Rats were euthanized on day 21 and brain tissue was sectioned for analysis of Tph2, Htr1a, Slc6a4, Slc22a3, and Crhr2 mRNA expression throughout the brainstem dorsal and median raphe nuclei. Immunization with M. vaccae did not affect fear expression on day 1. However, M. vaccae-immunized rats showed enhanced enhanced within-session fear extinction on day 1 and enhanced between-session fear extinction beginning on day 2, relative to vehicle-immunized controls. Immunization with M. vaccae and fear-potentiated startle had minimal effects on serotonergic gene expression when assessed 42 days after the final immunization. Together with previous studies, these data are consistent with the hypothesis that immunoregulatory strategies, such as immunization with M. vaccae, have potential for both prevention and treatment of trauma- and stressor-related psychiatric disorders.


Assuntos
Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Mycobacteriaceae/imunologia , Animais , Ansiedade/metabolismo , Encéfalo/metabolismo , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Imunização , Inflamação , Masculino , Mycobacteriaceae/patogenicidade , Núcleos da Rafe/metabolismo , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/efeitos dos fármacos , Transtornos de Estresse Pós-Traumáticos/metabolismo , Vacinação
8.
Brain Behav Immun ; 77: 127-140, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30597198

RESUMO

Posttraumatic stress disorder (PTSD) is a trauma and stressor-related disorder that is characterized by dysregulation of glucocorticoid signaling, chronic low-grade inflammation, and impairment in the ability to extinguish learned fear. Corticotropin-releasing hormone (Crh) is a stress- and immune-responsive neuropeptide secreted from the paraventricular nucleus of the hypothalamus (PVN) to stimulate the hypothalamic-pituitary-adrenal (HPA) axis; however, extra-hypothalamic sources of Crh from the central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST) govern specific fear- and anxiety-related defensive behavioral responses. We previously reported that preimmunization with a heat-killed preparation of the immunoregulatory environmental bacterium Mycobacterium vaccae NCTC 11659 enhances fear extinction in a fear-potentiated startle (FPS) paradigm. In this follow-up study, we utilized an in situ hybridization histochemistry technique to investigate Crh, Crhr1, and Crhr2 mRNA expression in the CeA, BNST, and PVN of the same rats from the original study [Fox et al., 2017, Brain, Behavior, and Immunity, 66: 70-84]. Here, we demonstrate that preimmunization with M. vaccae NCTC 11659 decreases Crh mRNA expression in the CeA and BNST of rats exposed to the FPS paradigm, and, further, that Crh mRNA expression in these regions is correlated with fear behavior during extinction training. These data are consistent with the hypothesis that M. vaccae promotes stress-resilience by attenuating Crh production in fear- and anxiety-related circuits. These data suggest that immunization with M. vaccae may be an effective strategy for prevention of fear- and anxiety-related disorders.


Assuntos
Hormônio Liberador da Corticotropina/efeitos dos fármacos , Medo/efeitos dos fármacos , Mycobacteriaceae/imunologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/fisiopatologia , Ansiedade/terapia , Encéfalo/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Medo/fisiologia , Seguimentos , Expressão Gênica/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Imunização/métodos , Masculino , Neuropeptídeos/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Núcleos Septais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA