Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Acta Neuropathol Commun ; 11(1): 6, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631900

RESUMO

The most common malignant brain tumour in children, medulloblastoma (MB), is subdivided into four clinically relevant molecular subgroups, although targeted therapy options informed by understanding of different cellular features are lacking. Here, by comparing the most aggressive subgroup (Group 3) with the intermediate (SHH) subgroup, we identify crucial differences in tumour heterogeneity, including unique metabolism-driven subpopulations in Group 3 and matrix-producing subpopulations in SHH. To analyse tumour heterogeneity, we profiled individual tumour nodules at the cellular level in 3D MB hydrogel models, which recapitulate subgroup specific phenotypes, by single cell RNA sequencing (scRNAseq) and 3D OrbiTrap Secondary Ion Mass Spectrometry (3D OrbiSIMS) imaging. In addition to identifying known metabolites characteristic of MB, we observed intra- and internodular heterogeneity and identified subgroup-specific tumour subpopulations. We showed that extracellular matrix factors and adhesion pathways defined unique SHH subpopulations, and made up a distinct shell-like structure of sulphur-containing species, comprising a combination of small leucine-rich proteoglycans (SLRPs) including the collagen organiser lumican. In contrast, the Group 3 tumour model was characterized by multiple subpopulations with greatly enhanced oxidative phosphorylation and tricarboxylic acid (TCA) cycle activity. Extensive TCA cycle metabolite measurements revealed very high levels of succinate and fumarate with malate levels almost undetectable particularly in Group 3 tumour models. In patients, high fumarate levels (NMR spectroscopy) alongside activated stress response pathways and high Nuclear Factor Erythroid 2-Related Factor 2 (NRF2; gene expression analyses) were associated with poorer survival. Based on these findings we predicted and confirmed that NRF2 inhibition increased sensitivity to vincristine in a long-term 3D drug treatment assay of Group 3 MB. Thus, by combining scRNAseq and 3D OrbiSIMS in a relevant model system we were able to define MB subgroup heterogeneity at the single cell level and elucidate new druggable biomarkers for aggressive Group 3 and low-risk SHH MB.


Assuntos
Biomarcadores Tumorais , Neoplasias Cerebelares , Proteínas Hedgehog , Meduloblastoma , Humanos , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Proteínas Hedgehog/metabolismo , Hidrogéis/uso terapêutico , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Fator 2 Relacionado a NF-E2 , Análise de Célula Única , RNA-Seq
2.
Cereb Cortex ; 33(3): 844-864, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35296883

RESUMO

Alcohol use, abuse, and addiction, and resulting health hazards are highly sex-dependent with unknown mechanisms. Previously, strong links between the SMPD3 gene and its coded protein neutral sphingomyelinase 2 (NSM) and alcohol abuse, emotional behavior, and bone defects were discovered and multiple mechanisms were identified for females. Here we report strong sex-dimorphisms for central, but not for peripheral mechanisms of NSM action in mouse models. Reduced NSM activity resulted in enhanced alcohol consumption in males, but delayed conditioned rewarding effects. It enhanced the acute dopamine response to alcohol, but decreased monoaminergic systems adaptations to chronic alcohol. Reduced NSM activity increased depression- and anxiety-like behavior, but was not involved in alcohol use for the self-management of the emotional state. Constitutively reduced NSM activity impaired structural development in the brain and enhanced lipidomic sensitivity to chronic alcohol. While the central effects were mostly opposite to NSM function in females, similar roles in bone-mediated osteocalcin release and its effects on alcohol drinking and emotional behavior were observed. These findings support the view that the NSM and multiple downstream mechanism may be a source of the sex-differences in alcohol use and emotional behavior.


Assuntos
Emoções , Esfingomielina Fosfodiesterase , Masculino , Camundongos , Animais , Feminino , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Consumo de Bebidas Alcoólicas , Ansiedade/metabolismo , Encéfalo/metabolismo , Etanol
3.
Cancers (Basel) ; 14(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35008416

RESUMO

Medulloblastoma (MB) is a childhood malignant brain tumour but also occurs in teenagers and young adults (TYA). Considering that MB is heterogeneous, this study aimed to define the molecular landscape of MBs in TYAs. We collated more than 2000 MB samples that included 287 TYA patients (13-24 years). We performed computational analyses consisting of genome-wide methylation and transcriptomic profiles and developed a prognostics model for the TYAs with MB. We identified that TYAs predominantly comprised of Group 4 (40%) and Sonic Hedgehog (SHH)-activated (33%) tumours, with Wingless-type (WNT, 17%) and Group 3 (10%) being less common. TYAs with SHH tumours displayed significantly more gene expression alterations, whereas no gene was detected in the Group 4 tumours. Across MB subgroups, we identified unique and shared sets of TYA-specific differentially methylated probes and DNA-binding motifs. Finally, a 22-gene signature stratified TYA patients into high- and low-risk groups, and the prognostic significance of these risk groups persisted in multivariable regression models (P = 0.001). This study is an important step toward delineating the molecular landscape of TYAs with MB. The emergence of novel genes and pathways may provide a basis for improved clinical management of TYA with MB.

4.
J Magn Reson Imaging ; 56(1): 147-157, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34842328

RESUMO

BACKGROUND: Medulloblastoma, ependymoma, and pilocytic astrocytoma are common pediatric posterior fossa tumors. These tumors show overlapping characteristics on conventional MRI scans, making diagnosis difficult. PURPOSE: To investigate whether apparent diffusion coefficient (ADC) values differ between tumor types and to identify optimum cut-off values to accurately classify the tumors using different performance metrics. STUDY TYPE: Systematic review and meta-analysis. SUBJECTS: Seven studies reporting ADC in pediatric posterior fossa tumors (115 medulloblastoma, 68 ependymoma, and 86 pilocytic astrocytoma) were included following PubMed and ScienceDirect searches. SEQUENCE AND FIELD STRENGTH: Diffusion weighted imaging (DWI) was performed on 1.5 and 3 T across multiple institution and vendors. ASSESSMENT: The combined mean and standard deviation of ADC were calculated for each tumor type using a random-effects model, and the effect size was calculated using Hedge's g. STATISTICAL TESTS: Sensitivity/specificity, weighted classification accuracy, balanced classification accuracy. A P value < 0.05 was considered statistically significant, and a Hedge's g value of >1.2 was considered to represent a large difference. RESULTS: The mean (± standard deviation) ADCs of medulloblastoma, ependymoma, and pilocytic astrocytoma were 0.76 ± 0.16, 1.10 ± 0.10, and 1.49 ± 0.16 mm2 /sec × 10-3 . To maximize sensitivity and specificity using the mean ADC, the cut-off was found to be 0.96 mm2 /sec × 10-3 for medulloblastoma and ependymoma and 1.26 mm2 /sec × 10-3 for ependymoma and pilocytic astrocytoma. The meta-analysis showed significantly different ADC distributions for the three posterior fossa tumors. The cut-off values changed markedly (up to 7%) based on the performance metric used and the prevalence of the tumor types. DATA CONCLUSION: There were significant differences in ADC between tumor types. However, it should be noted that only summary statistics from each study were analyzed and there were differences in how regions of interest were defined between studies. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 3.


Assuntos
Astrocitoma , Neoplasias Cerebelares , Ependimoma , Neoplasias Infratentoriais , Meduloblastoma , Astrocitoma/diagnóstico por imagem , Neoplasias Cerebelares/diagnóstico por imagem , Neoplasias Cerebelares/patologia , Criança , Diagnóstico Diferencial , Imagem de Difusão por Ressonância Magnética/métodos , Ependimoma/diagnóstico por imagem , Ependimoma/patologia , Humanos , Neoplasias Infratentoriais/diagnóstico por imagem , Neoplasias Infratentoriais/patologia , Meduloblastoma/diagnóstico por imagem , Estudos Retrospectivos
5.
Mol Psychiatry ; 26(12): 7141-7153, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34663904

RESUMO

Synaptic plasticity processes, which underlie learning and memory formation, require RNA to be translated local to synapses. The synaptic tagging hypothesis has previously been proposed to explain how mRNAs are available at specific activated synapses. However how RNA is regulated, and which transcripts are silenced or processed as part of the tagging process is still unknown. Modification of RNA by N6-methyladenosine (m6A/m) influences the cellular fate of mRNA. Here, by advanced microscopy, we showed that m6A demethylation by the eraser protein ALKBH5 occurs at active synaptic ribosomes and at synapses during short term plasticity. We demonstrated that at activated glutamatergic post-synaptic sites, both the YTHDF1 and YTHDF3 reader and the ALKBH5 eraser proteins increase in co-localisation to m6A-modified RNAs; but only the readers showed high co-localisation to modified RNAs during late-stage plasticity. The YTHDF1 and YTHFDF3 readers also exhibited differential roles during synaptic maturation suggesting that temporal and subcellular abundance may determine specific function. m6A-sequencing of human parahippocampus brain tissue revealed distinct white and grey matter m6A methylome profiles indicating that cellular context is a fundamental factor dictating regulated pathways. However, in both neuronal and glial cell-rich tissue, m6A effector proteins are themselves modified and m6A epitranscriptional and posttranslational modification processes coregulate protein cascades. We hypothesise that the availability m6A effector protein machinery in conjunction with RNA modification, may be important in the formation of condensed synaptic nanodomain assemblies through liquid-liquid phase separation. Our findings support that m6A demethylation by ALKBH5 is an intrinsic component of the synaptic tagging hypothesis and a molecular switch which leads to alterations in the RNA methylome, synaptic dysfunction and potentially reversible disease states.


Assuntos
Epigenoma , Sinapses , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Encéfalo/metabolismo , Desmetilação , Humanos , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo
6.
Open Biol ; 11(9): 210077, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34493070

RESUMO

Approximately 90% of cancer-related deaths can be attributed to a tumour's ability to spread. We have identified CG7379, the fly orthologue of human ING1, as a potent invasion suppressor. ING1 is a type II tumour suppressor with well-established roles in the transcriptional regulation of genes that control cell proliferation, response to DNA damage, oncogene-induced senescence and apoptosis. Recent work suggests a possible role for ING1 in cancer cell invasion and metastasis, but the molecular mechanism underlying this observation is lacking. Our results show that reduced expression of CG7379 promotes invasion in vivo in Drosophila, reduces the junctional localization of several adherens and septate junction components, and severely disrupts cell-cell junction architecture. Similarly, ING1 knockdown significantly enhances invasion in vitro and disrupts E-cadherin distribution at cell-cell junctions. A transcriptome analysis reveals that loss of ING1 affects the expression of several junctional and cytoskeletal modulators, confirming ING1 as an invasion suppressor and a key regulator of cell-cell junction integrity.


Assuntos
Neoplasias da Mama/prevenção & controle , Comunicação Celular , Proteínas de Drosophila/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína 1 Inibidora do Crescimento/metabolismo , Animais , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Humanos , Proteína 1 Inibidora do Crescimento/genética , Células MCF-7 , Invasividade Neoplásica , Transcriptoma
7.
Mol Psychiatry ; 26(12): 7403-7416, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34584229

RESUMO

Mental disorders are highly comorbid and occur together with physical diseases, which are often considered to arise from separate pathogenic pathways. We observed in alcohol-dependent patients increased serum activity of neutral sphingomyelinase. A genetic association analysis in 456,693 volunteers found associations of haplotypes of SMPD3 coding for NSM-2 (NSM) with alcohol consumption, but also with affective state, and bone mineralisation. Functional analysis in mice showed that NSM controls alcohol consumption, affective behaviour, and their interaction by regulating hippocampal volume, cortical connectivity, and monoaminergic responses. Furthermore, NSM controlled bone-brain communication by enhancing osteocalcin signalling, which can independently supress alcohol consumption and reduce depressive behaviour. Altogether, we identified a single gene source for multiple pathways originating in the brain and bone, which interlink disorders of a mental-physical co-morbidity trias of alcohol abuse-depression/anxiety-bone disorder. Targeting NSM and osteocalcin signalling may, thus, provide a new systems approach in the treatment of a mental-physical co-morbidity trias.


Assuntos
Alcoolismo , Doenças Ósseas , Transtorno Depressivo Maior , Esfingomielina Fosfodiesterase , Alcoolismo/genética , Animais , Doenças Ósseas/genética , Comorbidade , Transtorno Depressivo Maior/genética , Humanos , Camundongos , Morbidade , Esfingomielina Fosfodiesterase/genética
8.
Sci Rep ; 11(1): 15908, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354095

RESUMO

While specific microRNA (miRNA) signatures have been identified in glioblastoma (GBM), the intratumour heterogeneity in miRNA expression has not yet been characterised. In this study, we reveal significant alterations in miRNA expression across three GBM tumour regions: the core, rim, and invasive margin. Our miRNA profiling analysis showed that miR-330-5p and miR-215-5p were upregulated in the invasive margin relative to the core and the rim regions, while miR-619-5p, miR-4440 and miR-4793-3p were downregulated. Functional analysis of newly identified miRNAs suggests their involvement in regulating lipid metabolic pathways. Subsequent liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectroscopy (LC-MS/MS) profiling of the intracellular metabolome and the lipidome of GBM cells with dysregulated miRNA expression confirmed the alteration in the metabolite levels associated with lipid metabolism. The identification of regional miRNA expression signatures may underlie the metabolic heterogeneity within the GBM tumour and understanding this relationship may open new avenues for the GBM treatment.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/metabolismo , MicroRNAs/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Biologia Computacional/métodos , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Heterogeneidade Genética , Glioblastoma/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Espectrometria de Massas em Tandem/métodos , Transcriptoma/genética , Microambiente Tumoral/genética
9.
Neurooncol Adv ; 3(1): vdab030, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33948561

RESUMO

BACKGROUND: Therapeutic intervention in metastatic medulloblastoma is dependent on elucidating the underlying metastatic mechanism. We investigated whether an epithelial-mesenchymal transition (EMT)-like pathway could drive medulloblastoma metastasis. METHODS: A 3D Basement Membrane Extract (3D-BME) model was used to investigate medulloblastoma cell migration. Cell line growth was quantified with AlamarBlue metabolic assays and the morphology assessed by time-lapse imaging. Gene expression was analyzed by qRT-PCR and protein expression by immunohistochemistry of patient tissue microarrays and mouse orthotopic xenografts. Chromatin immunoprecipitation was used to determine whether the EMT transcription factor TWIST1 bound to the promoter of the multidrug pump ABCB1. TWIST1 was overexpressed in MED6 cells by lentiviral transduction (MED6-TWIST1). Inhibition of ABCB1 was mediated by vardenafil, and TWIST1 expression was reduced by either Harmine or shRNA. RESULTS: Metastatic cells migrated to form large metabolically active aggregates, whereas non-tumorigenic/non-metastatic cells formed small aggregates with decreasing metabolic activity. TWIST1 expression was upregulated in the 3D-BME model. TWIST1 and ABCB1 were significantly associated with metastasis in patients (P = .041 and P = .04, respectively). High nuclear TWIST1 expression was observed in the invasive edge of the MED1 orthotopic model, and TWIST1 knockdown in cell lines was associated with reduced cell migration (P < .05). TWIST1 bound to the ABCB1 promoter (P = .03) and induced cell aggregation in metastatic and TWIST1-overexpressing, non-metastatic (MED6-TWIST1) cells, which was significantly attenuated by vardenafil (P < .05). CONCLUSIONS: In this study, we identified a TWIST1-ABCB1 signaling axis during medulloblastoma migration, which can be therapeutically targeted with the clinically approved ABCB1 inhibitor, vardenafil.

10.
Neurooncol Adv ; 3(1): vdab043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041479

RESUMO

BACKGROUND: Pediatric spinal ependymomas (SP-EPNs) are rare primary central nervous system tumors with heterogeneous clinical course. Considering that ependymomas in children are biologically distinct from their adult counterparts, this study aimed to define the molecular landscape of SP-EPNs in children. METHODS: In this retrospective study, we have collected tumor samples from 27 SP-EPN patients younger than 18 years and carried out the histological review, DNA methylation, and gene expression profiling. RESULTS: Unsupervised analyses with methylation profiles revealed 2 subgroups where all grade I tumors (n = 11) were in Group 1, but the grade II/III tumors split into 2 groups (n = 7 in Group 1 and n = 9 in Group 2). The Heidelberg classifier assigned Group 1 tumors as spinal myxopapillary ependymomas (SP-MPEs), 5 Group 2 tumors as SP-EPNs, and failed to classify 4 Group 2 tumors. Copy numbers derived from DNA methylation arrays revealed subgroup-specific genetic alterations and showed that SP-EPN tumors lack MYCN amplification. Gene expression profiling revealed distinct transcriptomic signatures, including overexpression of genes involved in oxidative phosphorylation in SP-MPEs that were validated by Western blot analysis. We discovered widespread decreases in DNA methylation at enhancer regions that are associated with the expression of oncogenic signaling pathways in SP-MPEs. Furthermore, transcription factor motifs for master regulators, including HNF1B, PAX3, and ZIC3, were significantly overrepresented in probes specific to distal regulatory regions in SP-MPEs. CONCLUSION: Our findings show substantial heterogeneity in pediatric SP-EPN and uncover novel enhancers and transcriptional pathways specific to the SP-MPE subgroup, providing a foundation for future therapeutic strategies.

11.
Anal Chem ; 93(18): 6947-6954, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33900724

RESUMO

We present here a novel surface mass spectrometry strategy to perform untargeted metabolite profiling of formalin-fixed paraffin-embedded pediatric ependymoma archives. Sequential Orbitrap secondary ion mass spectrometry (3D OrbiSIMS) and liquid extraction surface analysis-tandem mass spectrometry (LESA-MS/MS) permitted the detection of 887 metabolites (163 chemical classes) from pediatric ependymoma tumor tissue microarrays (diameter: <1 mm; thickness: 4 µm). From these 163 classes, 60 classes were detected with both techniques, whilst LESA-MS/MS and 3D OrbiSIMS individually allowed the detection of another 83 and 20 unique metabolite classes, respectively. Through data fusion and multivariate analysis, we were able to identify key metabolites and corresponding pathways predictive of tumor relapse, which were retrospectively confirmed by gene expression analysis with publicly available data. Altogether, this sequential mass spectrometry strategy has shown to be a versatile tool to perform high-throughput metabolite profiling on sample-limited tissue archives.


Assuntos
Neoplasias Encefálicas , Espectrometria de Massas em Tandem , Criança , Humanos , Metabolômica , Recidiva , Estudos Retrospectivos , Espectrometria de Massa de Íon Secundário
13.
J Pathol ; 253(3): 326-338, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33206391

RESUMO

Medulloblastoma (MB) is the most common malignant brain tumour in children and is subdivided into four subgroups: WNT, SHH, Group 3, and Group 4. These molecular subgroups differ in their metastasis patterns and related prognosis rates. Conventional 2D cell culture methods fail to recapitulate these clinical differences. Realistic 3D models of the cerebellum are therefore necessary to investigate subgroup-specific functional differences and their role in metastasis and chemoresistance. A major component of the brain extracellular matrix (ECM) is the glycosaminoglycan hyaluronan. MB cell lines encapsulated in hyaluronan hydrogels grew as tumour nodules, with Group 3 and Group 4 cell lines displaying clinically characteristic laminar metastatic patterns and levels of chemoresistance. The glycoproteins, laminin and vitronectin, were identified as subgroup-specific, tumour-secreted ECM factors. Gels of higher complexity, formed by incorporation of laminin or vitronectin, revealed subgroup-specific adhesion and growth patterns closely mimicking clinical phenotypes. ECM subtypes, defined by relative levels of laminin and vitronectin expression in patient tissue microarrays and gene expression data sets, were able to identify novel high-risk MB patient subgroups and predict overall survival. Our hyaluronan model system has therefore allowed us to functionally characterize the interaction between different MB subtypes and their environment. It highlights the prognostic and pathological role of specific ECM factors and enables preclinical development of subgroup-specific therapies. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Cerebelares/patologia , Matriz Extracelular/patologia , Hidrogéis , Meduloblastoma/patologia , Modelos Anatômicos , Linhagem Celular Tumoral , Humanos
14.
Blood Adv ; 4(20): 5011-5024, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33057635

RESUMO

Somatic TP53 mutations and 17p deletions with genomic loss of TP53 occur in 37% to 46% of acute myeloid leukemia (AML) with adverse-risk cytogenetics and correlate with primary induction failure, high risk of relapse, and dismal prognosis. Herein, we aimed to characterize the immune landscape of TP53-mutated AML and determine whether TP53 abnormalities identify a patient subgroup that may benefit from immunotherapy with flotetuzumab, an investigational CD123 × CD3 bispecific dual-affinity retargeting antibody (DART) molecule. The NanoString PanCancer IO360 assay was used to profile 64 diagnostic bone marrow (BM) samples from patients with TP53-mutated (n = 42) and TP53-wild-type (TP53-WT) AML (n = 22) and 45 BM samples from patients who received flotetuzumab for relapsed/refractory (R/R) AML (15 cases with TP53 mutations and/or 17p deletion). The comparison between TP53-mutated and TP53-WT primary BM samples showed higher expression of IFNG, FOXP3, immune checkpoints, markers of immune senescence, and phosphatidylinositol 3-kinase-Akt and NF-κB signaling intermediates in the former cohort and allowed the discovery of a 34-gene immune classifier prognostic for survival in independent validation series. Finally, 7 out of 15 patients (47%) with R/R AML and TP53 abnormalities showed complete responses to flotetuzumab (<5% BM blasts) on the CP-MGD006-01 clinical trial (NCT #02152956) and had significantly higher tumor inflammation signature, FOXP3, CD8, inflammatory chemokine, and PD1 gene expression scores at baseline compared with nonresponders. Patients with TP53 abnormalities who achieved a complete response experienced prolonged survival (median, 10.3 months; range, 3.3-21.3 months). These results encourage further study of flotetuzumab immunotherapy in patients with TP53-mutated AML.


Assuntos
Anticorpos Biespecíficos , Leucemia Mieloide Aguda , Citogenética , Humanos , Imunoterapia , Subunidade alfa de Receptor de Interleucina-3 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteína Supressora de Tumor p53/genética
15.
Biomedicines ; 8(9)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867190

RESUMO

Glioblastoma (GB) is the most common and deadly type of primary malignant brain tumor with an average patient survival of only 15-17 months. GBs typically have hypoxic regions associated with aggressiveness and chemoresistance. Using patient derived GB cells, we characterized how GB responds to hypoxia. We noted a hypoxia-dependent glycolytic switch characterized by the up-regulation of HK2, PFKFB3, PFKFB4, LDHA, PDK1, SLC2A1/GLUT-1, CA9/CAIX, and SLC16A3/MCT-4. Moreover, many proangiogenic genes and proteins, including VEGFA, VEGFC, VEGFD, PGF/PlGF, ADM, ANGPTL4, and SERPINE1/PAI-1 were up-regulated during hypoxia. We detected the hypoxic induction of invasion proteins, including the plasminogen receptor, S100A10, and the urokinase plasminogen activator receptor, uPAR. Furthermore, we observed a hypoxia-dependent up-regulation of the autophagy genes, BNIP-3 and DDIT4 and of the multi-functional protein, NDRG1 associated with GB chemoresistance; and down-regulation of EGR1 and TFRC (Graphical abstract). Analysis of GB patient cohorts' revealed differential expression of these genes in patient samples (except SLC16A3) compared to non-neoplastic brain tissue. High expression of SLC2A1, LDHA, PDK1, PFKFB4, HK2, VEGFA, SERPINE1, TFRC, and ADM was associated with significantly lower overall survival. Together these data provide important information regarding GB response to hypoxia which could support the development of more effective treatments for GB patients.

16.
Neurooncol Adv ; 2(1): vdaa087, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32904996

RESUMO

BACKGROUND: Glioblastoma (GBM) is a highly aggressive brain tumor with rapid subclonal diversification, harboring molecular abnormalities that vary temporospatially, a contributor to therapy resistance. Fluorescence-guided neurosurgical resection utilizes the administration of 5-aminolevulinic acid (5-ALA) generating individually fluorescent tumor cells within a background population of non-neoplastic cells in the invasive tumor region. The aim of the study was to specifically isolate and interrogate the invasive GBM cell population using a novel 5-ALA-based method. METHODS: We have isolated the critical invasive GBM cell population by developing 5-ALA-based metabolic fluorescence-activated cell sorting. This allows purification and study of invasive cells from GBM without an overwhelming background "normal brain" signal to confound data. The population was studied using RNAseq, real-time PCR, and immunohistochemistry, with gene targets functionally interrogated on proliferation and migration assays using siRNA knockdown and known drug inhibitors. RESULTS: RNAseq analysis identifies specific genes such as SERPINE1 which is highly expressed in invasive GBM cells but at low levels in the surrounding normal brain parenchyma. siRNA knockdown and pharmacological inhibition with specific inhibitors of SERPINE1 reduced the capacity of GBM cells to invade in an in vitro assay. Rodent xenografts of 5-ALA-positive cells were established and serially transplanted, confirming tumorigenicity of the fluorescent patient-derived cells but not the 5-ALA-negative cells. CONCLUSIONS: Identification of unique molecular features in the invasive GBM population offers hope for developing more efficacious targeted therapies compared to targeting the tumor core and for isolating tumor subpopulations based upon intrinsic metabolic properties.

17.
iScience ; 23(6): 101237, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32629605

RESUMO

Metastasis is the leading cause of death for patients with cancer. Consequently it is imperative that we improve our understanding of the molecular mechanisms that underlie progression of tumor growth toward malignancy. Advances in genome characterization technologies have been very successful in identifying commonly mutated or misregulated genes in a variety of human cancers. However, the difficulty in evaluating whether these candidates drive tumor progression remains a major challenge. Using the genetic amenability of Drosophila melanogaster we generated tumors with specific genotypes in the living animal and carried out a detailed systematic loss-of-function analysis to identify conserved genes that enhance or suppress epithelial tumor progression. This enabled the discovery of functional cooperative regulators of invasion and the establishment of a network of conserved invasion suppressors. This includes constituents of the cohesin complex, whose loss of function either promotes individual or collective cell invasion, depending on the severity of effect on cohesin complex function.

18.
Brain Res Bull ; 161: 13-20, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32418901

RESUMO

Calcium/Calmodulin-dependent kinase alpha (αCaMKII) has been shown to play an essential role in synaptic plasticity and in learning and memory in animal models. However, there is little evidence for an involvement in specific memories in humans. Here we tested the potential involvement of the αCaMKII coding gene CAMK2A in verbal logical memory in two Caucasian populations from Germany, in a sample of 209 elderly people with cognitive impairments and a sample of 142 healthy adults. The association of single nucleotide polymorphisms (SNPs) located within the genomic region of CAMK2A with verbal logical memory learning and retrieval from the Wechsler Memory Scale was measured and hippocampal volume was assessed by structural MRI. In the elderly people, we found the minor allele of CAMK2A intronic SNP rs919741 to predict a higher hippocampal volume and better logical memory retrieval. This association was not found in healthy adults. The present study may provide evidence for an association of a genetic variant of the CAMK2A gene specifically with retrieval of logical memory in elderly humans. This effect is possibly mediated by a higher hippocampal volume.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Estudos de Associação Genética/métodos , Variação Genética/genética , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Memória/fisiologia , Idoso , Idoso de 80 Anos ou mais , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/genética , Feminino , Alemanha/epidemiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão/fisiologia , Polimorfismo de Nucleotídeo Único/genética
19.
Mol Cancer Res ; 16(12): 1977-1990, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30097457

RESUMO

Wnt/ß-catenin signaling plays a critical role during development of both normal and malignant colorectal cancer tissues. Phosphorylation of ß-catenin protein alters its trafficking and function. Such conventional allosteric regulation usually involves a highly specialized set of molecular interactions, which may specifically turn on a particular cell phenotype. This study identifies a novel transcription modulator with an FLYWCH/Zn-finger DNA-binding domain, called "FLYWCH1." Using a modified yeast-2-hybrid based Ras-Recruitment system, it is demonstrated that FLYWCH1 directly binds to unphosphorylated (nuclear) ß-catenin efficiently suppressing the transcriptional activity of Wnt/ß-catenin signaling that cannot be rescued by TCF4. FLYWCH1 rearranges the transcriptional activity of ß-catenin/TCF4 to selectively block the expression of specific downstream genes associated with colorectal cancer cell migration and morphology, including ZEB1, EPHA4, and E-cadherin. Accordingly, overexpression of FLYWCH1 reduces cell motility and increases cell attachment. The expression of FLYWCH1 negatively correlates with the expression level of ZEB1 and EPHA4 in normal versus primary and metastatic colorectal cancer tissues in patients. Thus, FLYWCH1 antagonizes ß-catenin/TCF4 signaling during cell polarity/migration in colorectal cancer. IMPLICATIONS: This study uncovers a new molecular mechanism by which FLYWCH1 with a possible tumor suppressive role represses ß-catenin-induced ZEB1 and increases cadherin-mediated cell attachment preventing colorectal cancer metastasis.


Assuntos
Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proteínas de Ligação a DNA/química , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Análise Serial de Tecidos , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Dedos de Zinco
20.
Acta Neuropathol ; 133(3): 463-483, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28000031

RESUMO

Alcohol is a widely consumed drug that can lead to addiction and severe brain damage. However, alcohol is also used as self-medication for psychiatric problems, such as depression, frequently resulting in depression-alcoholism comorbidity. Here, we identify the first molecular mechanism for alcohol use with the goal to self-medicate and ameliorate the behavioral symptoms of a genetically induced innate depression. An induced over-expression of acid sphingomyelinase (ASM), as was observed in depressed patients, enhanced the consumption of alcohol in a mouse model of depression. ASM hyperactivity facilitates the establishment of the conditioned behavioral effects of alcohol, and thus drug memories. Opposite effects on drinking and alcohol reward learning were observed in animals with reduced ASM function. Importantly, free-choice alcohol drinking-but not forced alcohol exposure-reduces depression-like behavior selectively in depressed animals through the normalization of brain ASM activity. No such effects were observed in normal mice. ASM hyperactivity caused sphingolipid and subsequent monoamine transmitter hypo-activity in the brain. Free-choice alcohol drinking restores nucleus accumbens sphingolipid- and monoamine homeostasis selectively in depressed mice. A gene expression analysis suggested strong control of ASM on the expression of genes related to the regulation of pH, ion transmembrane transport, behavioral fear response, neuroprotection and neuropeptide signaling pathways. These findings suggest that the paradoxical antidepressant effects of alcohol in depressed organisms are mediated by ASM and its control of sphingolipid homeostasis. Both emerge as a new treatment target specifically for depression-induced alcoholism.


Assuntos
Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Etanol/uso terapêutico , Homeostase/genética , Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Depressão/genética , Etanol/sangue , Preferências Alimentares/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Esfingomielina Fosfodiesterase/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA