Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurogastroenterol Motil ; 30(2): 166-176, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37528076

RESUMO

Background/Aims: Achalasia is a disorder characterized by impairment in lower esophageal sphincter relaxation and esophageal aperistalsis, caused primarily by loss of inhibitory innervation. However, little is known about associated changes in esophageal smooth muscle. We examined the contractile phenotype and innervation of the circular smooth muscle, as well as inflammatory status, and correlated these with patient-specific parameters. Methods: Circular smooth muscle biopsies were obtained in consecutive patients with achalasia undergoing peroral endoscopic myotomy. Axonal innervation and neurotransmitter subtypes were determined with immunocytochemistry, and this was used with quantitative Polymerase Chain Reaction (qPCR) to characterize smooth muscle proliferation and cellular phenotype, as well as collagen expression. These were compared to control tissue obtained at esophagectomy and correlated with patient demographic factors including age, onset of symptoms, and Eckhardt score. Results: Biopsies of smooth muscle were obtained from 25 patients with achalasia. Overall, there was increased mast cell number and collagen deposition but increased smooth muscle cell proliferation vs control. There was a striking drop in axon density over controls, with no differences among subtypes of achalasia. Immunocytochemical analysis showed increased expression of the contractile marker α-smooth muscle actin, principally in Type 1 achalasia, that increased with disease duration, while qPCR identified increased mRNA for smoothelin with decreased myosin heavy chain and collagen 3a1, but not collagen 1a1. Conclusions: The thickened circular smooth muscle layer in achalasia is largely denervated, with an altered contractile phenotype and fibrosis. Biopsies obtained during peroral endoscopic myotomy provide a means to further study the pathophysiology of achalasia.

2.
Sci Rep ; 12(1): 10275, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715562

RESUMO

Chronic inflammation of the human intestine in Crohn's disease (CD) causes bowel wall thickening, which typically progresses to stricturing and a recurrent need for surgery. Current therapies have limited success and CD remains idiopathic and incurable. Recent evidence shows a key role of intestinal smooth muscle cell (ISMC) hyperplasia in stricturing, which is not targeted by current anti-inflammatory therapeutics. However, progression of idiopathic pulmonary fibrosis, resembling CD in pathophysiology, is controlled by the tyrosine kinase inhibitors nintedanib (NIN) or pirfenidone, and we investigated these drugs for their effect on ISMC. In a culture model of rat ISMC, NIN inhibited serum- and PDGF-BB-stimulated growth and cell migration, and promoted the differentiated phenotype, while increasing secreted collagen. NIN did not affect signaling through PDGF-Rß or NFκB but did inhibit cytokine-induced expression of the pro-inflammatory cytokines IL-1ß and TNFα, supporting a transcriptional level of control. In TNBS-induced colitis in mice, which resembles CD, NIN decreased ISMC hyperplasia as well as expression of TNFα and IL-1ß, without effect in control animals. NIN also inhibited growth of human ISMC in response to human serum or PDGF-BB, which further establishes a broad range of actions of NIN that support further trial in human IBD.


Assuntos
Colite , Doença de Crohn , Animais , Becaplermina/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Doença de Crohn/patologia , Citocinas/metabolismo , Hiperplasia/patologia , Indóis , Intestinos/patologia , Camundongos , Músculo Liso/metabolismo , Fenótipo , Ratos , Fator de Necrose Tumoral alfa/metabolismo
3.
Neuroscience ; 443: 8-18, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32682824

RESUMO

The neurotrophin GDNF guides development of the enteric nervous system (ENS) in embryogenesis and directs survival and axon outgrowth in postnatal myenteric neurons in vitro. GDNF expression in intestinal smooth muscle cells is dynamic, with upregulation by inflammatory cytokines in vitro or intestinal inflammation in vivo, but the role of post-translational proteolytic cleavage is undefined. In a co-culture model of myenteric neurons, smooth muscle and glia, inhibition of serine or cysteine protease activity was ineffective against the >2-fold increase in axon density caused by TNFα. However, inhibitors of metalloproteinases (MMP) identified an essential role of MMP-9, and qPCR and western blotting showed that pro-inflammatory cytokines increased both mRNA and protein expression for MMP-9, in both cellular lysates and conditioned medium (CM). Inhibition of MMP-9 prevented the cytokine-induced increase in mature GDNF in CM or cellular lysates of co-cultures or cell lines of intestinal smooth muscle cells (ISMC) from adult rat colon. Western blotting showed parallel upregulation of mature GDNF and MMP-9 vs control in ISMC isolated on Day 2 of TNBS-induced colitis. Nonetheless, transfection of GDNF plasmid into HEK-293 cells as a carrier system, or directly into the co-culture model, conveyed a strong neurotrophic effect that was MMP-9 dependent. We conclude that MMP-9 activity is required for the neurotrophic effects of GDNF on myenteric neurons in vitro. However, the coordinated upregulation of GDNF and MMP-9 in intestinal smooth muscle by inflammatory cytokines provides a supportive, target cell-derived environment that limits inflammatory damage to the ENS.


Assuntos
Sistema Nervoso Entérico , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Metaloproteinase 9 da Matriz , Animais , Células Cultivadas , Células HEK293 , Humanos , Músculo Liso , Neurônios , Ratos
4.
Am J Pathol ; 190(9): 1843-1858, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479820

RESUMO

The progression of Crohn disease to intestinal stricture formation is poorly controlled, and the pathogenesis is unclear, although increased smooth muscle mass is present. A previously described rat model of trinitrobenzenesulfonic acid-induced colitis is re-examined here. Although inflammation of the mid-descending colon typically resolved, a subset showed characteristic stricturing by day 16, with an inflammatory infiltrate in the neuromuscular layers including eosinophils, CD3-positive T cells, and CD68-positive macrophages. Closer study identified CD163-positive, CD206-positive, and arginase-positive cells, indicating a M2 macrophage phenotype. Stricturing involved ongoing proliferation of intestinal smooth muscle cells (ISMC) with expression of platelet-derived growth factor receptor beta and progressive loss of phenotypic markers, and stable expression of hypoxia inducible factor 1 subunit alpha. In parallel, collagen I and III showed a selective and progressive increase over time. A culture model of the stricture phenotype of ISMC showed stable hypoxia inducible factor 1 subunit alpha expression that promoted growth and improved both survival and growth in models of experimental ischemia. This phenotype was hyperproliferative to serum and platelet-derived growth factor BB, and unresponsive to transforming growth factor beta, a prominent cytokine of M2 macrophages, compared with control ISMC. We identified a hyperplastic phenotype of ISMC, uniquely adapted to an ischemic environment to drive smooth muscle layer expansion, which may reveal new targets for treating intestinal fibrosis.


Assuntos
Doença de Crohn/patologia , Intestinos/patologia , Macrófagos/metabolismo , Músculo Liso/patologia , Animais , Constrição Patológica/induzido quimicamente , Constrição Patológica/patologia , Hiperplasia/induzido quimicamente , Hiperplasia/metabolismo , Hiperplasia/patologia , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Ratos , Ratos Sprague-Dawley , Ácido Trinitrobenzenossulfônico/toxicidade
5.
Neurogastroenterol Motil ; 31(10): e13675, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31290223

RESUMO

BACKGROUND: A low fermentable carbohydrate (FODMAP) diet is used in quiescent inflammatory bowel disease when irritable bowel syndrome-like symptoms occur. There is concern that the diet could exacerbate inflammation by modifying microbiota and short-chain fatty acid (SCFA) production. We examined the effect of altering dietary FODMAP content on inflammation in preclinical inflammatory models. METHODS: C57BL/6 mice were given 3% dextran sodium sulfate (DSS) in drinking water for 5 days and recovered for 3 weeks (postinflammatory, n = 12), or 5 days (positive-control, n = 12). Following recovery, DSS-treated or control mice (negative-control, n = 12) were randomized to 2-week low- (0.51 g/100 g total FODMAP) or high-FODMAP (4.10 g) diets. Diets mimicked human consumption containing fructose, sorbitol, galacto-oligosaccharide, and fructan. Colons were assessed for myeloperoxidase (MPO) activity and histological damage. Supernatants were generated for perforated patch-clamp recordings and cytokine measurement. Cecum contents were analyzed for microbiota, SCFA, and branched-chain fatty acids (BCFA). Data were analyzed by two-way ANOVA with Bonferroni. KEY RESULTS: Inflammatory markers were higher in the positive-control compared with negative-control and postinflammatory groups, but no differences occurred between the two diets within each treatment (MPO P > .99, histological scores P > .99, cytokines P > .05), or the perforated patch-clamp recordings (P > .05). Microbiota clustered mainly based on DSS exposure. No difference in SCFA content occurred. Higher total BCFA occurred with the low-FODMAP diet in positive-control (P < .01) and postinflammatory groups (P < .01). CONCLUSIONS AND INFERENCES: In this preclinical study, reducing dietary FODMAPs did not exacerbate nor mitigate inflammation. Microbiota profile changes were largely driven by inflammation rather than diet. Low FODMAP intake caused a shift toward proteolytic fermentation following inflammation.


Assuntos
Carboidratos da Dieta , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos/metabolismo , Fermentação , Microbioma Gastrointestinal/genética , Síndrome do Intestino Irritável/dietoterapia , Peroxidase/metabolismo , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Dissacarídeos , Modelos Animais de Doenças , Hemiterpenos/metabolismo , Inflamação , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/patologia , Isobutiratos/metabolismo , Camundongos , Monossacarídeos , Nociceptividade , Oligossacarídeos , Técnicas de Patch-Clamp , Ácidos Pentanoicos/metabolismo , RNA Ribossômico 16S
6.
Am J Physiol Cell Physiol ; 315(5): C722-C733, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30110565

RESUMO

Inflammation causes proliferation of intestinal smooth muscle cells (ISMC), contributing to a thickened intestinal wall and to stricture formation in Crohn's disease. Proliferation of ISMC in vitro and in vivo caused decreased expression of marker proteins, but the underlying cause is unclear. Since epigenetic change is important in other systems, we used immunocytochemistry, immunoblotting, and quantitative PCR to examine epigenetic modification in cell lines from rat colon at low passage or after extended growth to evaluate phenotype. Exposure to the histone deacetylase (HDAC) inhibitor trichostatin A or the DNA methyltransferase inhibitor 5-azacytidine reversed the characteristic loss of phenotypic markers among high-passage cell lines of ISMC. Expression of smooth muscle actin and smooth muscle protein 22, as well as functional expression of the neurotrophin glial cell line-derived neurotrophic factor, was markedly increased. Increased expression of muscarinic receptor 3 and myosin light chain kinase was correlated with an upregulated response to cholinergic stimulation. In human ISMC (hISMC) lines from the terminal ileum, phenotype was similarly affected by extended proliferation. However, in hISMC from resected Crohn's strictures, we observed a significantly reduced contractile phenotype compared with patient-matched intrinsic controls that was associated with increased patient-specific expression of DNA methyltransferase 1, HDAC2, and HDAC5. Therefore, protracted growth causes epigenetic alterations that account for an altered phenotype of ISMC. A similar process may promote stricture formation in Crohn's disease, where the potential for halting progression, or even reversal, of disease through control of phenotypic modulation may become a novel treatment option.


Assuntos
Doença de Crohn/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA/genética , Histona Desacetilase 2/genética , Histona Desacetilases/genética , Actinas/genética , Animais , Azacitidina/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Doença de Crohn/patologia , Doença de Crohn/cirurgia , Epigênese Genética/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Íleo/metabolismo , Íleo/patologia , Inflamação/genética , Inflamação/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/patologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ratos
7.
J Cell Mol Med ; 18(3): 444-54, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24417820

RESUMO

Thickening of the inflamed intestinal wall involves growth of smooth muscle cells (SMC), which contributes to stricture formation. Earlier, the growth factor platelet-derived growth factor (PDGF)-BB was identified as a key mitogen for SMC from the rat colon (CSMC), and CSMC growth in colitis was associated with both appearance of its receptor, PDGF-Rß and modulation of phenotype. Here, we examined the role of inflammatory cytokines in inducing and modulating the growth response to PDGF-BB. CSMC were enzymatically isolated from Sprague-Dawley rats, and the effect of tumour necrosis factor (TNF)-α, interleukin (IL)-1ß, transforming growth factor (TGF), IL-17A and IL-2 on CSMC growth and responsiveness to PDGF-BB were assessed using proliferation assays, PCR and western blotting. Conditioned medium (CM) was obtained at 48 hrs of trinitrobenzene sulphonic acid-induced colitis. Neither CM alone nor cytokines caused proliferation of early-passage CSMC. However, CM from inflamed, but not control colon significantly promoted the effect of PDGF-BB. IL-1ß, TNF-α and IL-17A, but not other cytokines, increased the effect of PDGF-BB because of up-regulation of mRNA and protein for PDGF-Rß without change in receptor phosphorylation. PDGF-BB was identified in adult rat serum (RS) and RS-induced CSMC proliferation was inhibited by imatinib, suggesting that blood-derived PDGF-BB is a local mitogen in vivo. In freshly isolated CSMC, CM from the inflamed colon as well as IL-1ß and TNF-α induced the early expression of PDGF-Rß, while imatinib blocked subsequent RS-induced cell proliferation. Thus, pro-inflammatory cytokines both initiate and maintain a growth response in CSMC via PDGF-Rß and serum-derived PDGF-BB, and control of PDGF-Rß expression may be beneficial in chronic intestinal inflammation.


Assuntos
Citocinas/farmacologia , Mediadores da Inflamação/farmacologia , Intestinos/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Becaplermina , Proliferação de Células/efeitos dos fármacos , Separação Celular , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Modelos Biológicos , Miócitos de Músculo Liso/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-sis/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA