Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Br J Nurs ; 30(13): S19-S24, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34251853

RESUMO

COVID-19 and rising student numbers are affecting healthcare education, particularly access to clinical placements. As healthcare education is increasingly supported by technology and non-traditional teaching methods, educational experiences gained through clinical placement also require new approaches. This article explores and discusses the use of a simulated clinical placement for a dietetic student cohort. During this virtual placement, students were able to explore and experience a virtual clinical setting and immerse themselves in a placement experience. A vast range of virtual resources were linked to the online placement portal, including statutory and mandatory training, dietetic resources, patient journeys and interprofessional communication. Advantages of this approach include that all students experience a given situation, unlike in traditional placements where workloads, variety and engagement vary; there is also no risk to patient safety. The aim is to enhance the learning experience to create effective, efficient clinicians. This virtual placement for dietetics is part of a bigger project to develop and evaluate the use of a virtual placement framework in a range of professions. The concept of virtual placement may have been brought forward by the COVID-19 crisis but was inevitable with the move to more technology-enhanced learning tools.


Assuntos
Educação a Distância , Bacharelado em Enfermagem , Treinamento por Simulação , Estudantes de Enfermagem , COVID-19/epidemiologia , Educação a Distância/organização & administração , Bacharelado em Enfermagem/organização & administração , Humanos , Aprendizagem , Pesquisa em Educação em Enfermagem , Pesquisa em Avaliação de Enfermagem , Projetos Piloto , Treinamento por Simulação/organização & administração , Estudantes de Enfermagem/psicologia , Reino Unido/epidemiologia
2.
Parasit Vectors ; 14(1): 174, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752733

RESUMO

BACKGROUND: Genotyping of polymorphic chromosomal inversions in malaria vectors such as An. coluzzii Coetzee & Wilkerson is important, both because they cause cryptic population structure that can mislead vector analysis and control and because they influence epidemiologically relevant eco-phenotypes. The conventional cytogenetic method of genotyping is an impediment because it is labor intensive, requires specialized training, and can be applied only to one gender and developmental stage. Here, we circumvent these limitations by developing a simple and rapid molecular method of genotyping inversion 2Rc in An. coluzzii that is both economical and field-friendly. This inversion is strongly implicated in temporal and spatial adaptations to climatic and ecological variation, particularly aridity. METHODS: Using a set of tag single-nucleotide polymorphisms (SNPs) strongly correlated with inversion orientation, we identified those that overlapped restriction enzyme recognition sites and developed four polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP) assays that distinguish alternative allelic states at the tag SNPs. We assessed the performance of these assays using mosquito population samples from Burkina Faso that had been cytogenetically karyotyped as well as genotyped, using two complementary high-throughput molecular methods based on tag SNPs. Further validation was performed using mosquito population samples from additional West African (Benin, Mali, Senegal) and Central African (Cameroon) countries. RESULTS: Of four assays tested, two were concordant with the 2Rc cytogenetic karyotype > 90% of the time in all samples. We recommend that these two assays be employed in tandem for reliable genotyping. By accepting only those genotypic assignments where both assays agree, > 99% of assignments are expected to be accurate. CONCLUSIONS: We have developed tandem PCR-RFLP assays for the accurate genotyping of inversion 2Rc in An. coluzzii. Because this approach is simple, inexpensive, and requires only basic molecular biology equipment, it is widely accessible. These provide a crucial tool for probing the molecular basis of eco-phenotypes relevant to malaria epidemiology and vector control.


Assuntos
Anopheles/classificação , Anopheles/genética , Inversão Cromossômica , Genótipo , Técnicas de Genotipagem/métodos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Animais , Burkina Faso , Resistência a Inseticidas/genética , Mosquitos Vetores/classificação , Mosquitos Vetores/genética , Polimorfismo de Nucleotídeo Único
3.
Parasit Vectors ; 13(1): 16, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924251

RESUMO

BACKGROUND: Chromosomal inversion polymorphisms play a role in adaptation to heterogeneous environments. Inversion polymorphisms are implicated in the very high ecological flexibility of the three main malaria vector species of the Afrotropical Anopheles gambiae complex, facilitating the exploitation of anthropogenic environmental modifications and promoting a strong association with humans. In addition to extending the species' spatial and temporal distribution, inversions are associated with epidemiologically relevant mosquito behavior and physiology, underscoring their medical importance. We here present novel PCR-RFLP based assays strongly predictive of genotype for the cosmopolitan 2Rb inversion in An. coluzzii and An. gambiae, a development which overcomes the numerous constraints inherent to traditional cytological karyotyping. METHODS: We designed PCR-RFLP genotyping assays based on tag SNPs previously computationally identified as strongly predictive (> 95%) of 2Rb genotype. We targeted those tags whose alternative allelic states destroyed or created the recognition site of a commercially available restriction enzyme, and designed assays with distinctive cleavage profiles for each inversion genotype. The assays were validated on 251 An. coluzzii and 451 An. gambiae cytologically karyotyped specimens from nine countries across Africa and one An. coluzzii laboratory colony. RESULTS: For three tag SNPs, PCR-RFLP assays (denoted DraIII, MspAI, and TatI) reliably produced robust amplicons and clearly distinguishable electrophoretic profiles for all three inversion genotypes. Results obtained with the DraIII assay are ≥ 95% concordant with cytogenetic assignments in both species, while MspAI and TatI assays produce patterns highly concordant with cytogenetic assignments only in An. coluzzii or An. gambiae, respectively. Joint application of species-appropriate pairs of assays increased the concordance levels to > 99% in An. coluzzii and 98% in An. gambiae. Potential sources of discordance (e.g. imperfect association between tag and inversion, allelic dropout, additional polymorphisms in the restriction target site, incomplete or failed restriction digestion) are discussed. CONCLUSIONS: The availability of highly specific, cost effective and accessible molecular assays for genotyping 2Rb in An. gambiae and An. coluzzii allows karyotyping of both sexes and all developmental stages. These novel tools will accelerate deeper investigations into the role of this ecologically and epidemiologically important chromosomal inversion in vector biology.


Assuntos
Anopheles/genética , Inversão Cromossômica/genética , Malária/transmissão , África/epidemiologia , Animais , Anopheles/microbiologia , Citogenética/métodos , Humanos , Cariotipagem , Mosquitos Vetores/genética , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético , Polimorfismo de Fragmento de Restrição/genética
4.
Biofabrication ; 12(2): 025009, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31783378

RESUMO

Biophysical cues robustly direct cell responses and are thus important tools for in vitro and translational biomedical applications. High throughput platforms exploring substrates with varying physical properties are therefore valuable. However, currently existing platforms are limited in throughput, the biomaterials used, the capability to segregate between different cues and the assessment of dynamic responses. Here we present a multiwell array (3 × 8) made of a substrate engineered to present topography or rigidity cues welded to a bottomless plate with a 96-well format. Both the patterns on the engineered substrate and the well plate format can be easily customized, permitting systematic and efficient screening of biophysical cues. To demonstrate the broad range of possible biophysical cues examinable, we designed and tested three multiwell arrays to influence cardiomyocyte, chondrocyte and osteoblast function. Using the multiwell array, we were able to measure different cell functionalities using analytical modalities such as live microscopy, qPCR and immunofluorescence. We observed that grooves (5 µm in size) induced less variation in contractile function of cardiomyocytes. Compared to unpatterned plastic, nanopillars with 127 nm height, 100 nm diameter and 300 nm pitch enhanced matrix deposition, chondrogenic gene expression and chondrogenic maintenance. High aspect ratio pillars with an elastic shear modulus of 16 kPa mimicking the matrix found in early stages of bone development improved osteogenic gene expression compared to stiff plastic. We envisage that our bespoke multiwell array will accelerate the discovery of relevant biophysical cues through improved throughput and variety.


Assuntos
Técnicas de Cultura de Células/instrumentação , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Proliferação de Células , Células Cultivadas , Condrócitos/citologia , Humanos , Camundongos , Miócitos Cardíacos/citologia , Nanoestruturas/química , Células-Tronco Pluripotentes/citologia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA