Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(38): e2311118120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695892

RESUMO

The nucleus accumbens (NAc) is central to motivation and action, exhibiting one of the highest densities of neuropeptide Y (NPY) in the brain. Within the NAc, NPY plays a role in reward and is involved in emotional behavior and in increasing alcohol and drug addiction and fat intake. Here, we examined NPY innervation and neurons of the NAc in humans and other anthropoid primates in order to determine whether there are differences among these various species that would correspond to behavioral or life history variables. We quantified NPY-immunoreactive axons and neurons in the NAc of 13 primate species, including humans, great apes, and monkeys. Our data show that the human brain is unique among primates in having denser NPY innervation within the NAc, as measured by axon length density to neuron density, even after accounting for brain size. Combined with our previous finding of increased dopaminergic innervation in the same region, our results suggest that the neurochemical profile of the human NAc appears to have rendered our species uniquely susceptible to neurophysiological conditions such as addiction. The increase in NPY specific to the NAc may represent an adaptation that favors fat intake and contributes to an increased vulnerability to eating disorders, obesity, as well as alcohol and drug dependence. Along with our findings for dopamine, these deeply rooted structural attributes of the human brain are likely to have emerged early in the human clade, laying the groundwork for later brain expansion and the development of cognitive and behavioral specializations.


Assuntos
Comportamento Aditivo , Núcleo Accumbens , Animais , Humanos , Neuropeptídeo Y , Encéfalo , Obesidade , Dopamina , Etanol
3.
PeerJ ; 9: e12240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721969

RESUMO

BACKGROUND: A novel physis in hominins modulates broadening and shortening of the ilium. We report analysis of a vascular canal system whose origin may be associated with this physis and which appears to be also unique to hominins. Its presence is potentially identifiable in the fossil record by its association with a highly enlarged foramen that is consistently present in modern humans and hominin fossils. METHODS: We measured the diameter of this foramen in humans, fossil hominins, and African great apes and corrected for body size. RESULTS: The mean relative human foramen diameter is significantly greater than those of either Pan or Gorilla. Moreover, eight of the nine values of the Cohen's d for these differences in ratios are highly significant and support the ordering of magnitudes: Pan < Gorilla < Homo. The relative foramen diameter of A.L. 288-1 is above the 75th percentile of all other hominoids and at the high end of humans. The foramen is also present in ARA-VP-6/500. CONCLUSIONS: We posit that the presence and significant enlargement of this foramen in fossils can reasonably serve as an indicator that its anterior inferior iliac spine emerged via the unique hominin physis. The foramen can therefore serve as an indicator of hominin iliac ontogenetic specialization for bipedality in fossil taxa.

4.
Brain Struct Funct ; 226(6): 1909-1923, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34032910

RESUMO

Recent evidence suggests that increased dopaminergic signaling within the dorsal striatum played a central role in the evolution of the human brain. This increase has been linked to human prosociality and language in what has been described as a dopamine-dominated striatum personality style. Increased striatal dopamine is associated with an increase in ventral striatal activity and promotes externally driven behaviors, including cooperation and social conformity. In contrast, decreased striatal dopamine is associated with increased dorsal striatal activity and favors internally driven and goal-oriented behaviors. Previous comparative studies have focused on the dorsal striatum, measuring dopaminergic innervation in the dorsal and medial caudate nucleus and putamen. Here, we add to this knowledge by examining regions of the ventral striatum. We quantified the density of tyrosine hydroxylase-immunoreactive axons, as a measure of dopaminergic innervation, in the nucleus accumbens and ventral pallidum of humans, great apes, platyrrhine and cercopithecid monkeys. Our data show that humans have a significantly greater dopaminergic innervation in both structures, supporting the hypothesis that selection for a prosocial neurochemistry in the human basal ganglia may have contributed to the evolution of our uniquely social behavior profile.


Assuntos
Prosencéfalo Basal , Núcleo Accumbens , Animais , Corpo Estriado , Dopamina , Humanos , Primatas
5.
J Hum Evol ; 143: 102784, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32315868

RESUMO

Odd-nosed monkeys 'arm-swing' more frequently than other colobines. They are therefore somewhat behaviorally analogous to atelines and apes. Scapular morphology regularly reflects locomotor mode, with both arm-swinging and climbing anthropoids showing similar characteristics, especially a mediolaterally narrow blade and cranially angled spine and glenoid. However, these traits are not expressed uniformly among anthropoids. Therefore, behavioral convergences in the odd-nosed taxa of Nasalis, Pygathrix, and Rhinopithecus with hominoids may not have resulted in similar structural convergences. We therefore used a broad sample of anthropoids to test how closely odd-nosed monkey scapulae resemble those of other arm-swinging primates. We used principal component analyses on size-corrected linear metrics and angles that reflect scapular size and shape in a broad sample of anthropoids. As in previous studies, our first component separated terrestrial and above-branch quadrupeds from clambering and arm-swinging taxa. On this axis, odd-nosed monkeys were closer than other colobines to modern apes and Ateles. All three odd-nosed genera retain glenoid orientations that are more typical of other colobines, but Pygathrix and Rhinopithecus are closer to hominoids than to other Asian colobines in mediolateral blade breadth, spine angle, and glenoid position. This suggests that scapular morphology of Pygathrix may reflect a significant reliance on arm-swinging and that the morphology of Rhinopithecus may reflect more reliance on general climbing. As 'arm-swinging' features are also found in taxa that only rarely arm-swing, we hypothesize that these features are also adaptive for scrambling and bridging in larger bodied anthropoids that use the fine-branch component of their arboreal niches.


Assuntos
Evolução Biológica , Hominidae/anatomia & histologia , Locomoção , Presbytini/anatomia & histologia , Escápula/anatomia & histologia , Animais , Hominidae/fisiologia , Filogenia , Presbytini/fisiologia
6.
Sci Rep ; 9(1): 14591, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601931

RESUMO

Intentional heat treating of toolstone has been documented to have begun at least by 70 K BP; however, the advantages of such treatment have been debated for decades. There are two schools of thought with regard to its purpose. One, is that it merely reduces the force required for flake propagation. A second is that it also alters flake morphological properties. We systematically tested these hypotheses by generating flakes from cores exposed to three different temperatures (ambient, 300 °C, and 350 °C) using automated propagation procedures that bypassed any human agency. While the force propagation magnitude is altered by heat treatment, the flakes were not. We examined these flakes according to nine measures of morphology. None differed significantly or systematically within the three categories. While our results confirm that heat treatment does reduce the force needed for flake propagation, they also demonstrate that such treatment has no significant effect on major morphological aspects of flake form.

7.
Proc Natl Acad Sci U S A ; 116(28): 13915-13920, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235562

RESUMO

The human ilium is significantly shorter and broader than those of all other primates. In addition, it exhibits an anterior inferior iliac spine (AIIS) that emerges via a secondary center of ossification, which is unique to hominids (i.e., all taxa related to the human clade following their phyletic separation from the African apes). Here, we track the ontogeny of human and other primate ossa coxae. The human pattern is unique, from anlage to adulthood, and fusion of its AIIS is the capstone event in a repositioning of the anterior gluteals that maximizes control of pelvic drop during upright walking. It is therefore a hominid synapomorphy that can be used to assess the presence and age of bipedal locomotion in extinct taxa.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Ílio/anatomia & histologia , Animais , Hominidae/genética , Humanos , Osteogênese/genética , Osteogênese/fisiologia , Pelve/anatomia & histologia , Filogenia , Primatas/anatomia & histologia , Primatas/genética , Dente/anatomia & histologia , Caminhada/fisiologia
9.
Anat Rec (Hoboken) ; 301(3): 496-514, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29418123

RESUMO

Among living mammals, only the African apes and some anteaters adopt knuckle-walking as their primary locomotor behavior. That Pan and Gorilla both knuckle-walk has been cited as evidence of their common ancestry and a primitive condition for a combined Homo, Pan, and Gorilla clade. Recent research on forelimb ontogeny and anatomy, in addition to recently described hominin fossils, indicate that knuckle-walking was independently acquired after divergence of the Pan and Gorilla lineages. Although the large-bodied, largely suspensory orangutan shares some aspects of the African ape bauplan, it does not regularly knuckle-walk when terrestrial. While many anatomical correlates of knuckle-walking have been identified, a functional explanation of this unusual locomotor pattern has yet to be proposed. Here, we argue that it was adopted by African apes as a means of ameliorating the consequences of repetitive impact loadings on the soft and hard tissues of the forelimb by employing isometric and/or eccentric contraction of antebrachial musculature during terrestrial locomotion. Evidence of this adaptation can be found in the differential size and fiber geometry of the forearm musculature, and differences in torso shape between the knuckle-walking and non-knuckle-walking apes (including humans). We also argue that some osteological features of the carpus and metacarpus that have been identified as adaptations to knuckle-walking are consequences of cartilage remodeling during ontogeny rather than traits limiting motion in the hand and wrist. An understanding of the functional basis of knuckle-walking provides an explanation of the locomotor parallelisms in modern Pan and Gorilla. Anat Rec, 301:496-514, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Evolução Biológica , Fósseis , Hominidae/anatomia & histologia , Hominidae/fisiologia , Locomoção/fisiologia , Ossos Metacarpais/fisiologia , Caminhada/fisiologia , Adaptação Fisiológica , Animais , Feminino , Mãos/anatomia & histologia , Mãos/fisiologia , Hominidae/classificação , Masculino , Ossos Metacarpais/anatomia & histologia , Articulação do Punho/anatomia & histologia , Articulação do Punho/fisiologia
10.
Proc Natl Acad Sci U S A ; 115(6): E1108-E1116, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358369

RESUMO

It has always been difficult to account for the evolution of certain human characters such as language, empathy, and altruism via individual reproductive success. However, the striatum, a subcortical region originally thought to be exclusively motor, is now known to contribute to social behaviors and "personality styles" that may link such complexities with natural selection. We here report that the human striatum exhibits a unique neurochemical profile that differs dramatically from those of other primates. The human signature of elevated striatal dopamine, serotonin, and neuropeptide Y, coupled with lowered acetylcholine, systematically favors externally driven behavior and greatly amplifies sensitivity to social cues that promote social conformity, empathy, and altruism. We propose that selection induced an initial form of this profile in early hominids, which increased their affiliative behavior, and that this shift either preceded or accompanied the adoption of bipedality and elimination of the sectorial canine. We further hypothesize that these changes were critical for increased individual fitness and promoted the adoption of social monogamy, which progressively increased cooperation as well as a dependence on tradition-based cultural transmission. These eventually facilitated the acquisition of language by elevating the reproductive advantage afforded those most sensitive to social cues.


Assuntos
Evolução Biológica , Corpo Estriado/fisiologia , Neuroquímica , Seleção Genética , Comportamento Social , Altruísmo , Animais , Cães , Humanos , Personalidade , Primatas , Conformidade Social
11.
Proc Natl Acad Sci U S A ; 115(6): 1244-1249, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358388

RESUMO

Panid, gorillid, and hominid social structures appear to have diverged as dramatically as did their locomotor patterns as they emerged from a late Miocene last common ancestor (LCA). Despite their elimination of the sectorial canine complex and adoption of bipedality with its attendant removal of their ready access to the arboreal canopy, Australopithecus was able to easily invade novel habitats after florescence from its likely ancestral genus, Ardipithecus sp. Other hominoids, unable to sustain sufficient population growth, began an inexorable decline, culminating in their restriction to modern refugia. Success similar to that of earliest hominids also characterizes several species of macaques, often termed "weed species." We here review their most salient demographic features and find that a key element is irregularly elevated female survival. It is reasonable to conclude that a similar feature characterized early hominids, most likely made possible by the adoption of social monogamy. Reduced female mortality is a more probable key to early hominid success than a reduction in birth space, which would have been physiologically more difficult.


Assuntos
Fertilidade/fisiologia , Hominidae/fisiologia , África , Animais , Comportamento Animal , Ecossistema , Feminino , Florestas , Fósseis , Haplorrinos/fisiologia , Hominidae/anatomia & histologia , Macaca/fisiologia , Masculino , Mortalidade , Comportamento Social
12.
Am J Phys Anthropol ; 162(4): 682-700, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28128440

RESUMO

OBJECTIVES: The higher primate scapula has been subject to many explanations of the putative "adaptive value" of its individual traits. However, the shift from the bone's position in above branch quadrupeds to its more posterolateral position in recent hominoids obviously required fundamental changes to its general form. We hypothesize that most features argued to be individually adaptive are more likely secondary consequences of changes in its fundamental bauplan, a view more consistent with modern developmental biology. MATERIALS AND METHODS: We tested this hypothesis with scapular metrics and angles from a broad anthropoid sample. RESULTS: Our results support our hypothesis. Contrary to earlier predictions, vertebral border length differs little relative to body size in anthropoids, inferior angle position primarily reflects mediolateral scapular breadth, and supraspinous and infraspinous fossa sizes largely reflect scapular spine orientation. Suspensory taxa have cranially oriented glenoids, whereas slow clamberers and humans do not. Australopithecus most closely resembles the latter. DISCUSSION: Most scapular features can be explained by only two primary changes: (1) reduction in mediolateral breadth and (2) change in the glenoid position relative to the vertebral border with increased reliance on suspension, which led to a more cranially angled scapular spine. Virtually all other scapular traits appear to be byproducts of these two changes. Based on fossil morphology, hominids1 were derived from a last common ancestor primarily adapted for clambering and not for suspension. Scapular form in early hominids such as Australopithecus is therefore primitive and largely reflects the genus's general clambering heritage.


Assuntos
Evolução Biológica , Hominidae/anatomia & histologia , Escápula/anatomia & histologia , Animais , Antropologia Física , Fósseis , Humanos , Análise de Componente Principal
13.
Knee Surg Sports Traumatol Arthrosc ; 25(4): 1048-1054, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26713325

RESUMO

PURPOSE: Some anatomical studies have indicated that the anterolateral ligament (ALL) of the knee is distinct ligamentous structure in humans. The purpose of this study is to compare the lateral anatomy of the knee among human and various animal specimens. METHODS: Fifty-eight fresh-frozen knee specimens, from 24 different animal species, were used for this anatomical study. The same researchers dissected all the specimens in this study, and dissections were performed in a careful and standardized manner. RESULTS: An ALL was not found in any of the 58 knees dissected. Another interesting finding in this study is that some primate species (the prosimians: the red and black and white lemurs) have two LCLs. CONCLUSION: The clinical relevance of this study is the lack of isolation of the ALL as a unique structure in animal species. Therefore, precaution is recommended before assessing the need for surgery to reconstruct the ALL as a singular ligament.


Assuntos
Articulação do Joelho/anatomia & histologia , Ligamentos Articulares/anatomia & histologia , Animais , Humanos
14.
J Hum Evol ; 94: 45-52, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27178457

RESUMO

Foramen magnum position has traditionally been used as an indicator of bipedality because it has been thought to favor a more "balanced" skull position. Here, we analyzed foramen magnum angle (FMA) in relation to locomotion in three mammalian orders that include bipedal or orthograde species in addition to quadrupedal or pronograde species. In marsupials and strepsirrhine primates, we found that there is no relationship between locomotor pattern and FMA. In rodents, we found that there is a significant difference in FMA between bipedal and quadrupedal rodents. However, when these species are analyzed in the context of enlarged auditory bullae, this relationship is no longer significant. Additionally, we find a significant relationship between relative brain size and FMA in strepsirrhine primates. Taken together, these data indicate that several developmental modules of the cranium influence FMA, but that locomotion does not. We caution that basicranial evolution is a complex phenomenon that must be explored in the context of each taxon's unique evolutionary and developmental history.


Assuntos
Forame Magno/anatomia & histologia , Locomoção , Marsupiais/anatomia & histologia , Roedores/anatomia & histologia , Strepsirhini/anatomia & histologia , Animais , Feminino , Masculino , Marsupiais/fisiologia , Roedores/fisiologia , Strepsirhini/fisiologia
15.
Am J Phys Anthropol ; 160(4): 729-39, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27101066

RESUMO

OBJECTIVES: Both interspecific and intraspecific variation in vertebral counts reflect the action of patterning control mechanisms such as Hox. The preserved A.L. 288-1 ("Lucy") sacrum contains five fused elements. However, the transverse processes of the most caudal element do not contact those of the segment immediately craniad to it, leaving incomplete sacral foramina on both sides. This conforms to the traditional definition of four-segmented sacra, which are very rare in humans and African apes. It was recently suggested that fossilization damage precludes interpretation of this specimen and that additional sacral-like features of its last segment (e.g., the extent of the sacral hiatus) suggest a general Australopithecus pattern of five sacral vertebrae. METHODS: We provide updated descriptions of the original Lucy sacrum. We evaluate sacral/coccygeal variation in a large sample of extant hominoids and place it within the context of developmental variation in the mammalian vertebral column. RESULTS: We report that fossilization damage did not shorten the transverse processes of the fifth segment of Lucy's sacrum. In addition, we find that the extent of the sacral hiatus is too variable in apes and hominids to provide meaningful information on segment identity. Most importantly, a combination of sacral and coccygeal features is to be expected in vertebrae at regional boundaries. DISCUSSION: The sacral/caudal boundary appears to be displaced cranially in early hominids relative to extant African apes and humans, a condition consistent with the likely ancestral condition for Miocene hominoids. While not definitive in itself, a four-segmented sacrum accords well with the "long-back" model for the Pan/Homo last common ancestor. Am J Phys Anthropol 160:729-739, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Hominidae/anatomia & histologia , Sacro/anatomia & histologia , Animais , Antropologia Física , Evolução Biológica , Feminino , Fósseis , Modelos Biológicos , Primatas/anatomia & histologia
16.
Anat Rec (Hoboken) ; 299(5): 583-600, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26916787

RESUMO

Previously, we described several features of the carpometacarpal joints in extant large-bodied apes that are likely adaptations to the functional demands of vertical climbing and suspension. We observed that all hominids, including modern humans and the 4.4-million-year-old hominid Ardipithecus ramidus, lacked these features. Here, we assess the uniqueness of these features in a large sample of monkey, ape, and human hands. These new data provide additional insights into the functional adaptations and evolution of the anthropoid hand. Our survey highlights a series of anatomical adaptations that restrict motion between the second and third metacarpals (MC2 and MC3) and their associated carpals in extant apes, achieved via joint reorganization and novel energy dissipation mechanisms. Their hamate-MC4 and -MC5 joint surface morphologies suggest limited mobility, at least in Pan. Gibbons and spider monkeys have several characters (angled MC3, complex capitate-MC3 joint topography, variably present capitate-MC3 ligaments) that suggest functional convergence in response to suspensory locomotion. Baboons have carpometacarpal morphology suggesting flexion/extension at these joints beyond that observed in most other Old World monkeys, probably as an energy dissipating mechanism minimizing collision forces during terrestrial locomotion. All hominids lack these specializations of the extant great apes, suggesting that vertical climbing was never a central feature of our ancestral locomotor repertoire. Furthermore, the reinforced carpometacarpus of vertically climbing African apes was likely appropriated for knuckle-walking in concert with other novel potential energy dissipating mechanisms. The most parsimonious explanation of the structural similarity of these carpometacarpal specializations in great apes is that they evolved independently.


Assuntos
Evolução Biológica , Ossos do Carpo , Mãos , Haplorrinos , Hominidae , Articulação do Punho , Animais , Ossos do Carpo/anatomia & histologia , Ossos do Carpo/fisiologia , Mãos/anatomia & histologia , Mãos/fisiologia , Haplorrinos/anatomia & histologia , Hominidae/anatomia & histologia , Locomoção/fisiologia , Articulação do Punho/anatomia & histologia , Articulação do Punho/fisiologia , Humanos
17.
PeerJ ; 4: e1521, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26793418

RESUMO

Upright walking absent a bent-hip-bent-knee gait requires lumbar lordosis, a ubiquitous feature in all hominids for which it can be observed. Its first appearance is therefore a central problem in human evolution. Atelids, which use the tail during suspension, exhibit demonstrable lordosis and can achieve full extension of their hind limbs during terrestrial upright stance. Although obviously homoplastic with hominids, the pelvic mechanisms facilitating lordosis appear largely similar in both taxa with respect to abbreviation of upper iliac height coupled with broad sacral alae. Both provide spatial separation of the most caudal lumbar(s) from the iliac blades. A broad sacrum is therefore a likely facet of earliest hominid bipedality. All tailed monkeys have broad alae. By contrast all extant apes have very narrow sacra, which promote "trapping" of their most caudal lumbars to achieve lower trunk rigidity during suspension. The alae in the tailless proconsul Ekembo nyanzae appear to have been quite broad, a character state that may have been primitive in Miocene hominoids not yet adapted to suspension and, by extension, exaptive for earliest bipedality in the hominid/panid last common ancestor. This hypothesis receives strong support from other anatomical systems preserved in Ardipithecus ramidus.

18.
PeerJ ; 3: e925, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25945314

RESUMO

Sexual dimorphism in body size is often used as a correlate of social and reproductive behavior in Australopithecus afarensis. In addition to a number of isolated specimens, the sample for this species includes two small associated skeletons (A.L. 288-1 or "Lucy" and A.L. 128/129) and a geologically contemporaneous death assemblage of several larger individuals (A.L. 333). These have driven both perceptions and quantitative analyses concluding that Au. afarensis was markedly dimorphic. The Template Method enables simultaneous evaluation of multiple skeletal sites, thereby greatly expanding sample size, and reveals that A. afarensis dimorphism was similar to that of modern humans. A new very large partial skeleton (KSD-VP-1/1 or "Kadanuumuu") can now also be used, like Lucy, as a template specimen. In addition, the recently developed Geometric Mean Method has been used to argue that Au. afarensis was equally or even more dimorphic than gorillas. However, in its previous application Lucy and A.L. 128/129 accounted for 10 of 11 estimates of female size. Here we directly compare the two methods and demonstrate that including multiple measurements from the same partial skeleton that falls at the margin of the species size range dramatically inflates dimorphism estimates. Prevention of the dominance of a single specimen's contribution to calculations of multiple dimorphism estimates confirms that Au. afarensis was only moderately dimorphic.

19.
Proc Natl Acad Sci U S A ; 112(16): 4877-84, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25901308

RESUMO

Australopithecus fossils were regularly interpreted during the late 20th century in a framework that used living African apes, especially chimpanzees, as proxies for the immediate ancestors of the human clade. Such projection is now largely nullified by the discovery of Ardipithecus. In the context of accumulating evidence from genetics, developmental biology, anatomy, ecology, biogeography, and geology, Ardipithecus alters perspectives on how our earliest hominid ancestors--and our closest living relatives--evolved.


Assuntos
Evolução Biológica , Fósseis , Pan troglodytes/fisiologia , Animais , Ecossistema , Hominidae/anatomia & histologia , Humanos , Locomoção , Dente/anatomia & histologia
20.
J Anat ; 226(3): 258-67, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25601190

RESUMO

Proximal femoral morphology and associated musculature are of special relevance to the understanding of hominoid locomotor systems. Knowledge of bone-muscle correspondence in extant hominoids forms an important comparative basis for inferring structure-function relationships in fossil hominids. However, there is still a lack of consensus on the correspondence between muscle attachment sites and surface morphology of the proximal femoral diaphysis in chimpanzees. Two alternative observations have been proposed regarding the attachment site positions of gluteus maximus (GM) and vastus lateralis (VL) relative to two prominent surface features of the proximal femoral diaphysis, the lateral spiral pilaster and the inferolateral fossa. Here, we use a combination of virtual and physical dissection in an attempt to identify the exact correspondence between muscle attachment sites and osteological features in two specimens of Pan troglodytes verus. The results show that the insertion of the GM tendon is consistently inferolateral to the lateral spiral pilaster, and that a part of the inferolateral fossa consistently forms the attachment site of the VL muscular fibers. While overall musculoskeletal features are similar in the two specimens examined in this study, GM and VL exhibit different degrees of segregation at the level of the inferolateral fossa. One specimen exhibited tendinous GM fibers penetrating the posteromedial part of VL, with both GM and VL inserting at the inferolateral fossa. In the other specimen, GM and VL were separated by a lateral intermuscular septum, which inserted into the inferolateral fossa. Variation of proximal femoral muscle attachments in chimpanzees is thus greater than previously thought. Our results indicate that a conspicuous osteological feature such as the inferolateral fossa does not necessarily correspond to the attachment site of a single muscle, but could serve as a boundary region between two muscles. Caution is thus warranted when interpreting the surface topography of muscle attachment sites and inferring locomotor functions.


Assuntos
Cabeça do Fêmur/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Sistema Musculoesquelético/anatomia & histologia , Pan troglodytes/anatomia & histologia , Tendões/anatomia & histologia , Animais , Nádegas/anatomia & histologia , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA