Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Soft Robot ; 10(6): 1055-1069, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37130309

RESUMO

The advent of soft robots has solved many issues posed by their rigid counterparts, including safer interactions with humans and the capability to work in narrow and complex environments. While much work has been devoted to developing soft actuators and bioinspired mechatronic systems, comparatively little has been done to improve the methods of actuation. Hydraulically soft actuators (HSAs) are emerging candidates to control soft robots due to their fast responses, low noise, and low hysteresis compared to compressible pneumatic ones. Despite advances, current hydraulic sources for large HSAs are still bulky and require high power availability to drive the pumping plant. To overcome these challenges, this work presents a new bioinspired soft and high aspect ratio pumping element (Bio-SHARPE) for use in soft robotic and medical applications. This new soft pumping element can amplify its input volume to at least 8.6 times with a peak pressure of at least 40 kPa. The element can be integrated into existing hydraulic pumping systems like a hydraulic gearbox. Naturally, an amplification of fluid volume can only come at the sacrifice of pumping pressure, which was observed as a 19.1:1 reduction from input to output pressure. The new concept enables a large soft robotic body to be actuated by smaller fluid reservoirs and pumping plant, potentially reducing their power and weight, and thus facilitating drive source miniaturization. The high amplification ratio also makes soft robotic systems more applicable for human-centric applications such as rehabilitation aids, bioinspired untethered soft robots, medical devices, and soft artificial organs. Details of the fabrication and experimental characterization of the Bio-SHARPE and its associated components are given. A soft robotic squid and an artificial heart ventricle are introduced and experimentally validated.


Assuntos
Órgãos Artificiais , Procedimentos Cirúrgicos Robóticos , Robótica , Humanos
2.
Adv Sci (Weinh) ; 10(12): e2205656, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808494

RESUMO

Three-dimensional (3D) bioprinting technology offers great potential in the treatment of tissue and organ damage. Conventional approaches generally rely on a large form factor desktop bioprinter to create in vitro 3D living constructs before introducing them into the patient's body, which poses several drawbacks such as surface mismatches, structure damage, and high contamination along with tissue injury due to transport and large open-field surgery. In situ bioprinting inside a living body is a potentially transformational solution as the body serves as an excellent bioreactor. This work introduces a multifunctional and flexible in situ 3D bioprinter (F3DB), which features a high degree of freedom soft printing head integrated into a flexible robotic arm to deliver multilayered biomaterials to internal organs/tissues. The device has a master-slave architecture and is operated by a kinematic inversion model and learning-based controllers. The 3D printing capabilities with different patterns, surfaces, and on a colon phantom are also tested with different composite hydrogels and biomaterials. The F3DB capability to perform endoscopic surgery is further demonstrated with fresh porcine tissue. The new system is expected to bridge a gap in the field of in situ bioprinting and support the future development of advanced endoscopic surgical robots.


Assuntos
Bioimpressão , Robótica , Animais , Suínos , Engenharia Tecidual/métodos , Materiais Biocompatíveis , Alicerces Teciduais/química
3.
Soft Robot ; 9(4): 820-836, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34613831

RESUMO

Research on soft artificial muscles (SAMs) is rapidly growing, both in developing new actuation ideas and improving existing structures with multifunctionality. The human body has more than 600 muscles that drive organs and joints to achieve desired functions. Inspired by the human muscles, this article presents a new type of SAM fiber formed from twisting and braiding soft hydraulic filament artificial muscles with high aspect ratio, high strain, and high energy efficiency. We systematically investigated the relationship between input pressure and output elongation as well as contraction force of the new muscles using different configurations in terms of an array of single and multiple muscles arranged in nontwisting (or straight), twisting, and braiding variants. Experimental results revealed that the twisting and braiding configurations greatly enhanced the muscle elongation and generated force compared with their nontwisting/braiding counterparts. To demonstrate the new muscles' usability, we implemented several muscle variants to bidirectionally manipulate 3D-printed human fingers and elbow, mimicking the human upper limb with a full range of motion. We also created a bioinspired growing soft tubular muscle that could simultaneously exert longitudinal and radial expansion upon pressurization, similar to that of auxetic metamaterial structures. The new growing soft tubular muscles were experimentally validated and the results showed that they could be potentially implemented in several emerging applications, including smart compression garments, stent-like supporting devices, and tubular grippers for medical use.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Fenômenos Mecânicos , Fibras Musculares Esqueléticas
4.
Artigo em Inglês | MEDLINE | ID: mdl-27043925

RESUMO

Infarct extension, a process involving progressive extension of the infarct zone (IZ) into the normally perfused border zone (BZ), leads to continuous degradation of the myocardial function and adverse remodelling. Despite carrying a high risk of mortality, detailed understanding of the mechanisms leading to BZ hypoxia and infarct extension remains unexplored. In the present study, we developed a 3D truncated ellipsoidal left ventricular model incorporating realistic electromechanical properties and fibre orientation to examine the mechanical interaction among the remote, infarct and BZs in the presence of varying infarct transmural extent (TME). Localized highly abnormal systolic fibre stress was observed at the BZ, owing to the simultaneous presence of moderately increased stiffness and fibre strain at this region, caused by the mechanical tethering effect imposed by the overstretched IZ. Our simulations also demonstrated the greatest tethering effect and stress in BZ regions with fibre direction tangential to the BZ-remote zone boundary. This can be explained by the lower stiffness in the cross-fibre direction, which gave rise to a greater stretching of the IZ in this direction. The average fibre strain of the IZ, as well as the maximum stress in the sub-endocardial layer, increased steeply from 10% to 50% infarct TME, and slower thereafter. Based on our stress-strain loop analysis, we found impairment in the myocardial energy efficiency and elevated energy expenditure with increasing infarct TME, which we believe to place the BZ at further risk of hypoxia. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Simulação por Computador , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Miocárdio/patologia , Sístole
5.
Artif Organs ; 39(8): 681-90, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26146861

RESUMO

This study in five large greyhound dogs implanted with a VentrAssist left ventricular assist device focused on identification of the precise site and physiological changes induced by or underlying the complication of left ventricular suction. Pressure sensors were placed in left and right atria, proximal and distal left ventricle, and proximal aorta while dual perivascular and tubing ultrasonic flow meters measured blood flow in the aortic root and pump outlet cannula. When suction occurred, end-systolic pressure gradients between proximal and distal regions of the left ventricle on the order of 40-160 mm Hg indicated an occlusive process of variable intensity in the distal ventricle. A variable negative flow difference between end systole and end diastole (0.5-3.4 L/min) was observed. This was presumably mediated by variable apposition of the free and septal walls of the ventricle at the pump inlet cannula orifice which lasted approximately 100 ms. This apposition, by inducing an end-systolic flow deficit, terminated the suction process by relieving the imbalance between pump requirement and delivery from the right ventricle. Immediately preceding this event, however, unnaturally low end-systolic pressures occurred in the left atrium and proximal left ventricle which in four dogs lasted for 80-120 ms. In one dog, however, this collapse progressed to a new level and remained at approximately -5 mm Hg across four heart beats at which point suction was relieved by manual reduction in pump speed. Because these pressures were associated with a pulmonary capillary wedge pressure of -5 mm Hg as well, they indicate total collapse of the entire pulmonary venous system, left atrium, and left ventricle which persisted until pump flow requirement was relieved by reducing pump speed. We suggest that this collapse caused the whole vascular region from pulmonary capillaries to distal left ventricle to behave as a Starling resistance which further reduced right ventricular output thus contributing to a major reduction in pump flow. We contend that similar complications of manual speed control also occur in the human subject and remain a major unsolved problem in the clinical management of patients implanted with rotary blood pumps.


Assuntos
Coração Auxiliar/efeitos adversos , Hemodinâmica , Falha de Prótese , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda , Animais , Modelos Animais de Doenças , Cães , Modelos Cardiovasculares , Desenho de Prótese , Volume Sistólico , Fatores de Tempo , Transdutores de Pressão , Resistência Vascular , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/fisiopatologia , Pressão Ventricular
6.
Artif Organs ; 39(2): E24-35, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25345482

RESUMO

The present study investigates the response of implantable rotary blood pump (IRBP)-assisted patients to exercise and head-up tilt (HUT), as well as the effect of alterations in the model parameter values on this response, using validated numerical models. Furthermore, we comparatively evaluate the performance of a number of previously proposed physiologically responsive controllers, including constant speed, constant flow pulsatility index (PI), constant average pressure difference between the aorta and the left atrium, constant average differential pump pressure, constant ratio between mean pump flow and pump flow pulsatility (ratioP I or linear Starling-like control), as well as constant left atrial pressure ( P l a ¯ ) control, with regard to their ability to increase cardiac output during exercise while maintaining circulatory stability upon HUT. Although native cardiac output increases automatically during exercise, increasing pump speed was able to further improve total cardiac output and reduce elevated filling pressures. At the same time, reduced venous return associated with upright posture was not shown to induce left ventricular (LV) suction. Although P l a ¯ control outperformed other control modes in its ability to increase cardiac output during exercise, it caused a fall in the mean arterial pressure upon HUT, which may cause postural hypotension or patient discomfort. To the contrary, maintaining constant average pressure difference between the aorta and the left atrium demonstrated superior performance in both exercise and HUT scenarios. Due to their strong dependence on the pump operating point, PI and ratioPI control performed poorly during exercise and HUT. Our simulation results also highlighted the importance of the baroreflex mechanism in determining the response of the IRBP-assisted patients to exercise and postural changes, where desensitized reflex response attenuated the percentage increase in cardiac output during exercise and substantially reduced the arterial pressure upon HUT.


Assuntos
Simulação por Computador , Exercício Físico , Coração Auxiliar , Hemodinâmica , Modelos Cardiovasculares , Pressão Sanguínea , Débito Cardíaco , Humanos
7.
Artif Organs ; 37(8): 695-703, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23638682

RESUMO

This multicenter study examines in detail the spontaneous increase in pump flow at fixed speed that occurs in exercise. Eight patients implanted with the VentrAssist rotary blood pump were subjected to maximal and submaximal cycle ergometry studies, the latter being completed with patients supine and monitored with right heart catheter and echocardiography. Maximal exercise studies conducted in each patient at three different pump speeds on separate days established initially the magnitude and consistency of increases in pump flow that correlated well with changes in heart rate. However, there was considerable variation, coefficients of variation for mean heart rate and pump flow being 47.9 and 49.3%, respectively. Secondly, these studies indicated that increasing pump flows caused significant improvements in maximal exercise capacity. An increase of 2.1 L/min (35%) in maximum blood flow caused 12 W (16%) further increase in achievable work, 1.26 (9.3%) mL/kg/min in maximal oxygen uptake, and 2.3 (23%) mL/kg/min in anaerobic threshold. Mean increases in lactate were 0.85 mm (24%), but mean B-type natiuretic peptide fell by 126 mm, (-78%). From submaximal supine exercise studies, multiple linear regression of pump flow on factors thought to underlie the spontaneous increase in pump flow indicated that it was associated with increases in heart rate (P = 0.039), pressure gradient across the left ventricle (P = 0.032), and right atrial pressure (P = 0.003). These changes have implications for the recently reported Starling-like controller for pump flow based on pump pulsatility values, which emulates the Starling curve relating pump output to left ventricular preload. Unmodified, the controller would not permit the full benefits of this effect to be afforded to patients implanted with rotary blood pumps. A modification to the pump control algorithm is proposed to eliminate this problem.


Assuntos
Exercício Físico/fisiologia , Coração Auxiliar , Adulto , Idoso , Feminino , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Fluxo Pulsátil , Adulto Jovem
8.
Artif Organs ; 36(9): 787-96, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22626056

RESUMO

A clinically intuitive physiologic controller is desired to improve the interaction between implantable rotary blood pumps and the cardiovascular system. This controller should restore the Starling mechanism of the heart, thus preventing overpumping and underpumping scenarios plaguing their implementation. A linear Starling-like controller for pump flow which emulated the response of the natural left ventricle (LV) to changes in preload was then derived using pump flow pulsatility as the feedback variable. The controller could also adapt the control line gradient to accommodate longer-term changes in cardiovascular parameters, most importantly LV contractility which caused flow pulsatility to move outside predefined limits. To justify the choice of flow pulsatility, four different pulsatility measures (pump flow, speed, current, and pump head pressure) were investigated as possible surrogates for LV stroke work. Simulations using a validated numerical model were used to examine the relationships between LV stroke work and these measures. All were approximately linear (r(2) (mean ± SD) = 0.989 ± 0.013, n = 30) between the limits of ventricular suction and opening of the aortic valve. After aortic valve opening, the four measures differed greatly in sensitivity to further increases in LV stroke work. Pump flow pulsatility showed more correspondence with changes in LV stroke work before and after opening of the aortic valve and was least affected by changes in the LV and right ventricular (RV) contractility, blood volume, peripheral vascular resistance, and heart rate. The system (flow pulsatility) response to primary changes in pump flow was then demonstrated to be appropriate for stable control of the circulation. As medical practitioners have an instinctive understanding of the Starling curve, which is central to the synchronization of LV and RV outputs, the intuitiveness of the proposed Starling-like controller will promote acceptance and enable rational integration into patterns of hemodynamic management.


Assuntos
Coração Auxiliar , Fluxo Pulsátil , Função Ventricular Esquerda , Humanos , Modelos Cardiovasculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA