Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(12): 6726-6739, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32449932

RESUMO

Developing lymphocytes of jawed vertebrates cleave and combine distinct gene segments to assemble antigen-receptor genes. This process called V(D)J recombination that involves the RAG recombinase binding and cutting recombination signal sequences (RSSs) composed of conserved heptamer and nonamer sequences flanking less well-conserved 12- or 23-bp spacers. Little quantitative information is known about the contributions of individual RSS positions over the course of the RAG-RSS interaction. We employ a single-molecule method known as tethered particle motion to track the formation, lifetime and cleavage of individual RAG-12RSS-23RSS paired complexes (PCs) for numerous synthetic and endogenous 12RSSs. We reveal that single-bp changes, including in the 12RSS spacer, can significantly and selectively alter PC formation or the probability of RAG-mediated cleavage in the PC. We find that some rarely used endogenous gene segments can be mapped directly to poor RAG binding on their adjacent 12RSSs. Finally, we find that while abrogating RSS nicking with Ca2+ leads to substantially shorter PC lifetimes, analysis of the complete lifetime distributions of any 12RSS even on this reduced system reveals that the process of exiting the PC involves unidentified molecular details whose involvement in RAG-RSS dynamics are crucial to quantitatively capture kinetics in V(D)J recombination.


Assuntos
Conformação de Ácido Nucleico , Sinais Direcionadores de Proteínas/genética , Receptores de Antígenos/genética , Recombinação V(D)J/genética , Animais , Clivagem do DNA , Linfócitos/metabolismo , Imagem Individual de Molécula , Vertebrados/genética , Vertebrados/crescimento & desenvolvimento
2.
Sci Immunol ; 2(13)2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28733470

RESUMO

Dendritic cell (DC) activation and antigen presentation are critical for efficient priming of T cell responses. Here, we study how lentiviral vectors (LVs) deliver antigen and activate DCs to generate T cell immunization in vivo. We report that antigenic proteins delivered in vector particles via pseudotransduction were sufficient to stimulate an antigen-specific immune response. The delivery of the viral genome encoding the antigen increased the magnitude of this response in vivo but was irrelevant in vitro. Activation of DCs by LVs was independent of MyD88, TRIF, and MAVS, ruling out an involvement of Toll-like receptor or RIG-I-like receptor signaling. Cellular DNA packaged in LV preparations induced DC activation by the host STING (stimulator of interferon genes) and cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase) pathway. Envelope-mediated viral fusion also activated DCs in a phosphoinositide 3-kinase-dependent but STING-independent process. Pseudotransduction, transduction, viral fusion, and delivery of cellular DNA collaborate to make the DC-targeted LV preparation an effective immunogen.

3.
Genes Dev ; 30(8): 873-5, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27083993

RESUMO

Generation of a diverse repertoire of antigen receptor specificities via DNA recombination underpins adaptive immunity. In this issue ofGenes&Development, Carmona and colleagues (pp. 909-917) provide novel insights into the origin and function of recombination-activating gene 1 (RAG1) and RAG2, the lymphocyte-specific components of the recombinase involved in the process.


Assuntos
Imunidade Adaptativa/fisiologia , Imunidade Adaptativa/genética , Imunidade Adaptativa/imunologia , Animais , Proteínas de Ligação a DNA/imunologia , Proteínas de Homeodomínio/imunologia , Humanos , VDJ Recombinases/genética , VDJ Recombinases/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(14): E1715-23, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831509

RESUMO

The recombination-activating gene products, RAG1 and RAG2, initiate V(D)J recombination during lymphocyte development by cleaving DNA adjacent to conserved recombination signal sequences (RSSs). The reaction involves DNA binding, synapsis, and cleavage at two RSSs located on the same DNA molecule and results in the assembly of antigen receptor genes. We have developed single-molecule assays to examine RSS binding by RAG1/2 and their cofactor high-mobility group-box protein 1 (HMGB1) as they proceed through the steps of this reaction. These assays allowed us to observe in real time the individual molecular events of RAG-mediated cleavage. As a result, we are able to measure the binding statistics (dwell times) and binding energies of the initial RAG binding events and characterize synapse formation at the single-molecule level, yielding insights into the distribution of dwell times in the paired complex and the propensity for cleavage on forming the synapse. Interestingly, we find that the synaptic complex has a mean lifetime of roughly 400 s and that its formation is readily reversible, with only ∼40% of observed synapses resulting in cleavage at consensus RSS binding sites.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/química , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/metabolismo , Recombinação V(D)J , Células HEK293 , Proteína HMGB1/metabolismo , Humanos , Sinapses Imunológicas/metabolismo , Movimento (Física) , Mutação , Distribuição Normal , Ligação Proteica , Receptores de Antígenos/genética
5.
Nat Commun ; 5: 3077, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24435062

RESUMO

TFAM (transcription factor A, mitochondrial) is a DNA-binding protein that activates transcription at the two major promoters of mitochondrial DNA (mtDNA)--the light strand promoter (LSP) and the heavy strand promoter 1 (HSP1). Equally important, it coats and packages the mitochondrial genome. TFAM has been shown to impose a U-turn on LSP DNA; however, whether this distortion is relevant at other sites is unknown. Here we present crystal structures of TFAM bound to HSP1 and to nonspecific DNA. In both, TFAM similarly distorts the DNA into a U-turn. Yet, TFAM binds to HSP1 in the opposite orientation from LSP explaining why transcription from LSP requires DNA bending, whereas transcription at HSP1 does not. Moreover, the crystal structures reveal dimerization of DNA-bound TFAM. This dimerization is dispensable for DNA bending and transcriptional activation but is important in DNA compaction. We propose that TFAM dimerization enhances mitochondrial DNA compaction by promoting looping of the DNA.


Assuntos
Empacotamento do DNA/fisiologia , DNA Mitocondrial/química , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ativação Transcricional/fisiologia , Sequência de Bases , Cristalização , DNA/química , DNA/genética , DNA/fisiologia , DNA Mitocondrial/fisiologia , Proteínas de Ligação a DNA/fisiologia , Dimerização , Humanos , Proteínas Mitocondriais/fisiologia , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Conformação Proteica , Análise de Sequência de DNA , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA